ROSHOLT FARM

Variable Irrigation and Nitrogen Research

Pope County, Minnesota

Status

Installation: 2020

Data collection: 2020-2022

Contact

Jeppe Kjaersgaard, Research Scientist Minnesota Department of Agriculture 651-201-6149

Jeppe.Kjaersgaard@state.mn.us

Vasu Sharma, Irrigation Specialist University of Minnesota 612-626-4986

vasudha@umn.edu

Holly Kovarik, District Manager Pope Soil and Water Conservation District 320-634-5327

Holly.Kovarik@mn.nacdnet.net

www.mda.state.mn.us/rosholtfarm

Partners

Collaborative effort between multiple government agencies, agricultural businesses and organizations, and the University of Minnesota

GOAL

To evaluate the management and interactions between irrigation and nitrogen fertilizer and their impacts on water quality.

OBJECTIVE

This study evaluates interactions between 4 irrigation rates and 6 nitrogen (N) rates for corn.

- 1) Evaluate variable irrigation and N rate interaction effects on corn yield, nitrate-N leaching, crop evapotranspiration, crop water productivity, and water- and N-use efficiency;
- 2) Develop proximal and UAV remote sensing-based non-destructive in-season corn water and N status diagnosis methods and in-season variable rate N and irrigation management strategies.

LOCATION

The study is conducted at the Rosholt Research Farm in Westport, Minnesota. The Rosholt farm is a 40-acre farm owned by Pope Soil & Water Conservation District and is devoted to water quality research and crop production demonstration. A companion study is taking place at the University of Minnesota Sand Plain Research Farm in Becker, Minnesota.

OVERVIEW OF THE PLOT LAYOUT

The study design includes 24 treatments that are the combination of 4 irrigation rates and 6 N rates in a split plot design. Each treatment is replicated four times. Irrigation treatments serve as the main plot and N-rates as the sub-plot (Figure 1). The four irrigation rates are (i) full irrigation (FI), i.e., imposing no water stress on the crop, (ii) 75% of FI, (iii) 50% of FI and (iv) rainfed conditions. The six N rates are 0, 70, 140, 210, 280 and 350 lbs/ac. Urea-N fertilizer is applied to the plots in two splits, with 30% at V2 and 70% at V9 corn growth stages.

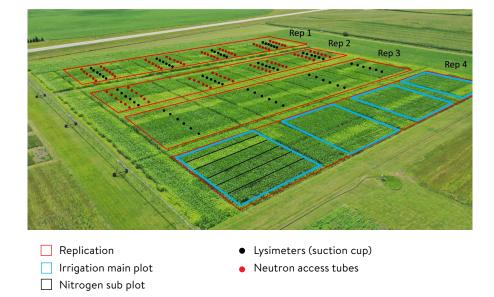


Figure 1. Experimental layout and position of lysimeters and neutron access tubes at the Rosholt Farm.

MONITORING

To understand how irrigation and N rates interact with each other and how they impact nitrate leaching and crop water use, the following monitoring efforts are conducted:

- Collect weekly soil water samples from 96 suction cup lysimeters placed below the corn root zone and analyze the water samples for nitrate-N. The 96 lysimeters were installed permanently at the research site in the spring of 2020 (Figure 2).
- Measure soil moisture at 72 plots using neutron soil moisture meter weekly.
- Collect above-ground plant samples for plant biomass and N uptake at V8, R1 and R6 development stages.
- Collect post-harvest soil samples at 0-1 ft., 1-2 ft. and 2-3 ft. depths for nitrate-N determination.
- Collect grain yield and grain N content for total N balance and N use efficiency calculations by combining the middle two rows of each plot.
- Collect weekly crop canopy temperature, Leaf Area Index, relative chlorophyll content and photosynthetically active radiation using Crop Circle Phenom proximal sensor until V12 corn growth stage.
- Monitor corn N and water status across the growing season using an unmanned aerial vehicle (UAV) remote sensing system with a multispectral optical camera and a thermal camera.

Figure 2. Suction cup lysimeter installation at the Rosholt Farm in 2020.

PROJECT PARTNERS

