

Final Township Testing Nitrate Report: Rice County 2017-2018

June 2019

Minnesota Department of Agriculture

Pesticide and Fertilizer Management Division

In accordance with the Americans with Disabilities Act, this information is available in alternative forms of communication upon request by calling 651-201-6000. TTY users can call the Minnesota Relay Service at 711.

The MDA is an equal opportunity employer and provider.

ACKNOWLEDGEMENTS

MDA PRIMARY AUTHOR

Lauren Bammert, Nikol Ross, and Ben Bruening

MDA CONTRIBUTORS AND REVIEWERS

Kimberly Kaiser, Larry Gunderson, and Jen Schaust

FUNDING

Project dollars provided by the Clean Water Fund (from the Clean Water, Land and Legacy Amendment).

TABLE OF CONTENTS

Acknowledgements	2
Table of Contents	3
List of Figures	4
List of Tables	5
Executive Summary	7
Introduction	8
Background	10
Township Testing Methods	14
Initial Results	20
Final Results	26
Summary	31
References	32
Appendix A	35
Appendix B	37
Appendix C	44
Appendix D	49
Appendix E	50
Appendix F	51
Appendix G	53
Appendix H	54
Appendix I	58
Appendix J	59
Appendix K	60

LIST OF FIGURES

Figure 1. Townships Tested in Rice County	9
Figure 2. Statewide Geomorphology Layer, Sediment Association in Rice County (DNR, MGS, and UN 1997)	
Figure 3. Minnesota Townships with Vulnerable Groundwater and Row Crop Production	14
Figure 4. Water Table Aquifer Vulnerability Rating in Rice County	16
Figure 5. Well Locations and Nitrate Results from Initial Dataset in Rice County	21
Figure 6. Well Locations and Nitrate Results from Final Well Dataset in Rice County	27
Figure 7. Feedlot Locations in Rice County (MPCA, 2018b)	40
Figure 8. Fertilizer Spills and Investigations in Rice County (MDA, 2017)	43
Figure 9. Land Cover in Rice County (USDA NASS Cropland Data Layer, 2013)	45
Figure 10. Active Groundwater Use Permits in Rice County (MDNR, 2017)	48

LIST OF TABLES

Table 1. Vulnerability Ratings Based on the Geomorphology of Minnesota, Sediment Association Lay	er15
Table 2. Homeowner Participation in Initial and Follow-Up Well Water Sampling, Rice County	17
Table 3. Rice County Township Testing Summary Statistics for Initial Well Dataset	22
Table 4. Estimated Population with Water Wells Over 10mg/L Nitrate-N, Rice County	23
Table 5. Nitrate Concentrations within Sampled Groundwater Aquifers	24
Table 6. Initial and Final Well Dataset Results, Rice County	26
Table 7. Rice County Township Testing Summary Statistics for Final Well Dataset	28
Table 8. Township Nitrate Results Related to Vulnerable Geology and Row Crop Production, Rice Cou	-
Table 9. Animal Unit Calculations (MPCA, 2017b)	38
Table 10. Feedlots and Permitted Animal Unit Capacity, Rice County	39
Table 11. Fertilizer Storage Facility Licenses and Abandoned Sites, Rice County	41
Table 12. Spills and Investigations by Chemical Type, Rice County	42
Table 13. Fertilizer Related Spills and Investigations by Township, Rice County	42
Table 14. Land Cover Data (2013) by Township, Rice County (USDA NASS Cropland Data Layer, 2013)	46
Table 15. Active Groundwater Use Permits by Township, Rice County	47
Table 16. Active Groundwater Use Permits by Aquifer, Rice County	47
Table 17. Reasons Wells Were Removed from the Final Well Dataset by Township, Rice County	50
Table 18. Completed Site Visits for Wells Removed from the Final Well Dataset by Township, Rice Co	
Table 19. Aquifer Type Distribution of Active Drinking Water Wells in Minnesota Well Index by Township, Rice County	52
Table 20. Property Setting for Well Location	54
Table 21. Well Construction Type	54
Table 22 Age of Well	54

Table 23. Depth of Well	54
Table 24. Unique Well ID Known	55
Table 25. Livestock Located on Property	55
Table 26. Fertilizer Stored on Property	55
Table 27. Farming on Property	55
Table 28. Distance to an Active or Inactive Feedlot	56
Table 29. Distance to Septic System	56
Table 30. Distance to an Agricultural Field	56
Table 31. Drinking Water Well	56
Table 32. Treatment System Present (Treatment System Used for Drinking Water)	57
Table 33. Last Tested for Nitrate	57
Table 34. Last Nitrate Test Result	57
Table 35. Well Construction Type for Final Well Dataset	58
Table 36. Well Depth for Final Well Dataset	58
Table 37. Year of Well Construction for Final Well Dataset	58
Table 38. Temperature (°C) of Well Water for Final Well Dataset	60
Table 39. pH of Well Water for Final Well Dataset	60
Table 40. Specific Conductivity (μS/cm) of Well Water for Final Well Dataset	60
Table 41. Dissolved Oxygen (mg/L) of Well Water for Final Well Dataset	60

EXECUTIVE SUMMARY

Nitrate is a naturally occurring, water soluble molecule that is made up of nitrogen and oxygen. Although nitrate occurs naturally, it can also originate from sources such as fertilizer, animal manure, and human waste. Nitrate is a concern because it can be a risk to human health at elevated levels. The Minnesota Department of Health (MDH) has established a Health Risk Limit (HRL) of 10 mg/L nitrate as nitrogen (nitrate-N) for private drinking water wells in Minnesota.

In response to health concerns over nitrate-N in drinking water the Minnesota Department of Agriculture (MDA) developed the Nitrogen Fertilizer Management Plan (NFMP). The NFMP outlines a statewide plan to assess vulnerable areas for nitrate in groundwater known as the Township Testing Program.

The primary goal of the Township Testing Program is to identify areas that have high nitrate concentrations in their groundwater. The program also informs residents about the health risk of their well water. Areas were selected based on historically elevated nitrate conditions, aquifer vulnerability and row crop production. The MDA plans to offer nitrate-N tests to more than 70,000 private well owners in over 300 townships by 2019. This will be one of the largest nitrate testing efforts ever conducted and completed.

In 2017, private wells in the Rice County study area (four townships) were sampled for nitrate-N. Samples were collected from private wells using homeowner collection and mail-in methods. These initial samples were collected from 478 wells representing an average response rate of 34 percent of homeowners. Well log information was obtained when available and correlated with nitrate-N results. Initial well dataset results showed that across the study area, 5.6 percent of private wells sampled were at or above the health standard of 10 mg/L for nitrate-N. Based on the initial results, it is estimated that 237 residents could be consuming well water with nitrate-N at or over the HRL.

The MDA completed follow-up sampling and well site visits at 67 wells in the summer of 2018. A follow-up sampling was offered to all homeowners with wells that had a detectable nitrate-N result.

A well site visit was conducted to identify wells that were unsuitable for final analysis. The final well dataset is intended to only include private drinking water wells potentially impacted by applied commercial agricultural fertilizer. Therefore, wells with construction issues or nearby potential point sources of nitrogen were removed from the final well dataset. Point sources of nitrogen can include: feedlots, subsurface sewage treatment systems, fertilizer spills, and bulk storage of fertilizer. A total of 50 (10.5 percent) wells were determined to be unsuitable and were removed from the dataset. The final well dataset had a total of 428 wells.

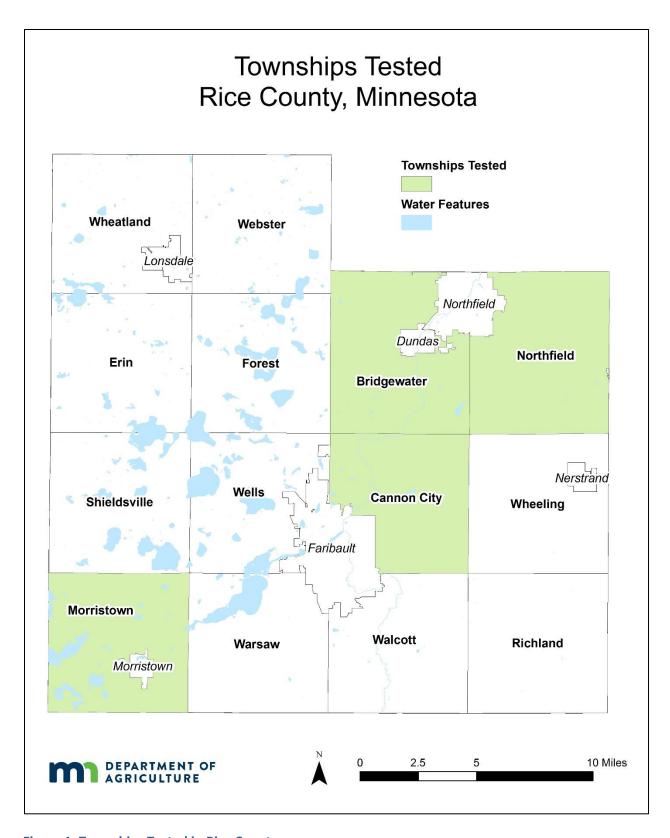
The final well dataset was analyzed to determine the percentage of wells at or over the HRL of 10 mg/L nitrate-N. When analyzed at the township scale the percent of wells at or over the HRL ranged from 0 percent (Cannon City Township) to 5.1 percent (Northfield Township).

INTRODUCTION

The Minnesota Department of Agriculture (MDA) is the lead agency for nitrogen fertilizer use and management. The Nitrogen Fertilizer Management Plan (NFMP) is the state's blueprint for prevention or minimization of the impacts of nitrogen fertilizer on groundwater. The MDA revised the NFMP in 2015. Updating the NFMP provided an opportunity to restructure county and state strategies for reducing nitrate contamination of groundwater, with more specific, localized accountability for nitrate contamination from agriculture. The NFMP outlines how the MDA addresses elevated nitrate levels in groundwater. The NFMP has four components: prevention, monitoring, assessment and mitigation.

The goal of nitrate monitoring and assessment is to develop a comprehensive understanding of the severity, magnitude, and long term trends of nitrate in groundwater as measured in public and private wells. The MDA established the Township Testing Program to determine current nitrate concentrations in private wells on a township scale. This program is designed to quickly assess a township in a short time window. Monitoring focuses on areas of the state where groundwater nitrate contamination is more likely to occur. This is based initially on hydrogeologically vulnerable areas where appreciable acres of agricultural crops are grown. Statewide the MDA plans to offer nitrate-N tests to more than 70,000 private well owners in over 300 townships by 2019. As of February 2019, 306 townships in 42 counties have completed the initial sampling.

In 2017, four townships in Rice County were selected to participate in the Township Testing Program (Figure 1). Areas were chosen based on several criteria. Criteria used includes: professional knowledge shared by the local soil and water conservation district (SWCD) or county environmental departments, past high nitrate as nitrogen (nitrate-N) results, vulnerable groundwater, and the amount of row crop production. Initial water samples were collected from private wells by homeowners and mailed to a laboratory. Sample results were mailed by the laboratory to the participating homeowners. The sampling, analysis, and results were provided at no cost to participating homeowners and paid for by the Clean Water Fund.


Well owners with detectable nitrate-N results were offered a no cost pesticide sample and a follow-up nitrate-N sample collected by MDA staff. The MDA began evaluating pesticide presence and concentrations in private water wells at the direction of the Minnesota Legislature. The follow-up pesticide and nitrate-N sampling in Rice County occurred during the summer of 2018. The follow-up included a well site visit (when possible) in order to rule out well construction issues and to identify potential point sources of nitrogen (Appendix B).

Wells that had questionable construction integrity or are near a point source of nitrogen were removed from the final well dataset. After the unsuitable wells were removed, the nitrate-N concentrations of well water were assessed for each area.

For further information on the NFMP and Township Testing Program, visit the following webpages:

www.mda.state.mn.us/nfmp

www.mda.state.mn.us/townshiptesting

Figure 1. Townships Tested in Rice County

BACKGROUND

In many rural areas of Minnesota, nitrate is one of the most common contaminants in groundwater, and in some localized areas, a significant number of wells have high nitrate levels.

Nitrate is a naturally occurring, water soluble molecule that is made up of nitrogen and oxygen. Although nitrate occurs naturally, it can also originate from other sources such as fertilizer, animal manure, and human waste. Nitrate is a concern because it can have a negative effect on human health at elevated levels. The United States Environmental Protection Agency has established a drinking water Maximum Contaminant Level (MCL) of 10 mg/L for nitrate-N (US EPA, 2009) in municipal water systems. The Minnesota Department of Health (MDH) has also established a Health Risk Limit (HRL) of 10 mg/L nitrate-N for private drinking water wells in Minnesota.

Nitrogen present in groundwater can be found in the forms of nitrite and nitrate. In the environment, nitrite generally converts to nitrate, which means nitrite occurs very rarely in groundwater. The nitrite concentration is commonly less than the reporting level of 0.01 mg/L, resulting in a negligible contribution to the nitrate plus nitrite concentration (Nolan and Stoner, 2000). Therefore, analytical methods generally combine nitrate plus nitrite together. Measurements of nitrate plus nitrite as nitrogen and measurements of nitrate as nitrogen will hereafter be referred to as "nitrate".

NITRATE FATE AND TRANSPORT

Nitrate is considered a conservative anion and is highly mobile in many shallow coarse-textured groundwater systems. Once in groundwater, nitrate is often considered very stable and can move large distances from its source. However, in some settings nitrate in groundwater may be converted to nitrogen gas in the absence of oxygen and the presence of organic carbon, through a natural process called denitrification. Denitrification occurs when oxygen levels are depleted and nitrate becomes the primary oxygen source for microorganisms. In systems where bedrock aquifers are at or near the land surface, such as parts of Rice County, contaminants such as nitrate can travel quickly to the aquifer (Campion, 1997b), leaving little chance for denitrification or other attenuating processes. As a result, areas of Rice County where bedrock aquifers are near the surface and row crop agriculture is prevalent may be particularly vulnerable to elevated nitrate concentrations. However, geochemical conditions can be highly variable within an aquifer or region and can also change over-time (MPCA, 1999).

GEOLOGY AND HYDROGEOLOGY

The surficial geology of Rice County was largely shaped by glacial events. The whole county was covered by glaciers during several glacial events starting about 2,000,000 years ago (Patterson & Hobbs, 1995). All but the eastern portion of Rice County was glaciated during the Wisconsinan glaciation about 20,000 years ago (Patterson & Hobbs 1995). As the Des Moines Lobe of the last glaciation retreated, the Cannon River Valley formed as glacial meltwater flowed northeast from Glacial Lake Minnesota (Patterson & Hobbs 1995).

Stagnant ice left by the retreating glacier created the hill and lake topography seen in the area today and deposited a layer of loam to clay loam stagnation depositions (Patterson & Hobbs, 1995). This layer has low permeability (Hobbs et al., 1995) and the aquifers below these deposits are considered to be at low risk of contamination (Campion, 1997b)

The surficial geology of much of the central and southeastern portions of the county consists of glacial till. In the central portions of the county this till is from the Wisconsinan glaciation, and in the southeast it is from earlier glaciations. The Wisconsinan till contains sand deposits, creating some potential pathways for fast recharge and creating a moderate sensitivity to pollution in underlying aquifers (Campion, 1997b). The older till in the southeastern portion of the county overlies a bedrock confining layer, meaning aquifers below are considered to have a low sensitivity to pollution (Campion, 1997b).

Along the river valleys scattered throughout all but the northwestern portion of the county, including the Cannon River Valley, glacial meltwater deposited glacial outwash (Patterson & Hobbs, 1995). This outwash is often gravelly or sandy, sometimes creating a path from surface contaminants to reach the subsurface (Hobbs et al., 1995; Campion, 1997b). Along the Northeastern Cannon River Valley and Prairie Creek, glacial meltwater eroded earlier glacial deposits and exposed Paleozoic bedrock (Patterson & Hobbs, 1995). This bedrock ranges in composition from limestone to sandstone to shale (Patterson & Hobbs, 1995), and where it is exposed it can provide a quick pathway for water from the surface to reach aquifers. This makes these aquifers the most susceptible to contamination in Rice County (Campion, 1997b).

Most private groundwater wells in Rice County withdraw water from bedrock aquifers. Wells withdraw mostly from the St Peter-Prairie du Chien-Jordan aquifer, which spans the whole testing area. The only areas of Rice County where the St. Peter-Prairie du Chien-Jordan is not present is the west-central and the extreme northwest areas. The saturated thickness of the aquifer ranges from zero to 500ft (Campion, 1997a). The area of highest saturated thickness is in the southern part of the county, because here the St. Peter-Prairie du Chien-Jordan is under the Decorah-Platteville-Glenwood confining unit. The saturated thickness decreases as you move north because of the reduction of the confining layer due to erosion (Campion, 1997a).

About 5% of wells in the testing area draw water from the Quaternary aquifers, according the County Well Index (CWI). These Quaternary aquifers are made of pre-Wisconsinan till (Campion & Wetzel, 1997).

Statewide geomorphological mapping conducted by the Minnesota Department of Natural Resources (MDNR), the Minnesota Geological Survey (MGS) and the University of Minnesota at Duluth (MDNR, MGS, and UMD, 1997) indicates the extent of glacial deposits in Rice County as presented in Figure 2.

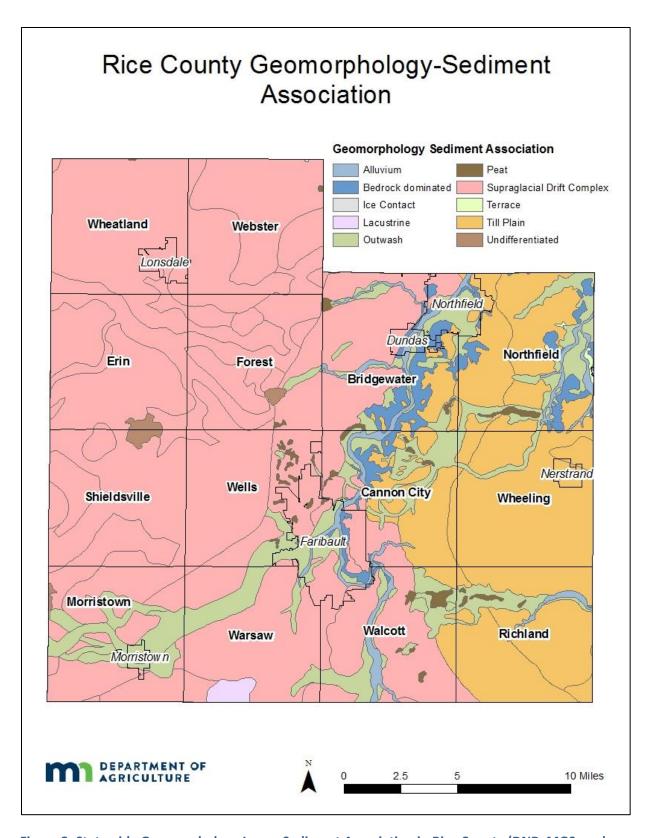


Figure 2. Statewide Geomorphology Layer, Sediment Association in Rice County (DNR, MGS, and UMD, 1997)

NITROGEN POINT SOURCES

The focus of the Township Testing Program is to assess nitrogen contamination in groundwater as a result of commercial nitrogen fertilizer applied to cropland. Any wells potentially impacted by point sources were removed from the final well dataset. Potential point sources such as subsurface sewage treatment systems (more commonly known as septic systems), feedlots, fertilizer spills, and bulk storage of fertilizer are considered in this section. Below is a brief overview of these sources in Rice County. Further details are in Appendix B.

SUBSURFACE SEWAGE TREATMENT SYSTEM

Subsurface sewage treatment systems (SSTS) can be a potential source for contaminants in groundwater such as nitrate and fecal material (MDH, 2014). A total of 7,644 SSTS were reported in Rice County for 2017. Over a recent 16 year period (2002-2016), 2,328 construction permits for new, replacement, or repairs for SSTS were issued. Of all the reported septic systems in Rice County, 30 percent are newer than 2002 or have been repaired since 2002 (MPCA, 2018a). When new SSTS's are installed they are required to be in compliance with the rules at the time of installation. Newer systems meet modern SSTS regulations and must comply with the current well code; which requires a 50 foot horizontal separation from the well (MDH, 2014).

FEEDLOT

Manure produced on a feedlot can be a potential source of nitrogen pollution if improperly stored or spread. In the Rice County study area there are a total of 67 active feedlots. There are 44 (67%) active feedlots permitted to house 300 or more animal units (AU) (Appendix B; Figure 7).

FERTILIZER STORAGE LOCATION

Bulk fertilizer storage locations are potential point sources of nitrogen because they store large concentrations of nitrogen based chemicals. Licenses are required for individuals and companies that store large quantities of fertilizer. The Rice County study area has only one bulk fertilizer storage licenses with that one being in Morristown Township (Appendix B; Table 11).

FERTILIZER SPILLS AND INVESTIGATIONS

A total of 4 historic fertilizer spills and investigations occurred in the Rice County study area. These were all either old emergency spills or small spills and investigations (Appendix B; Table 12).

TOWNSHIP TESTING METHODS

VULNERABLE TOWNSHIPS

Well water sampling is focused on areas that are considered vulnerable to groundwater contamination by commercial nitrogen fertilizer. Typically townships and cities are selected for sampling if more than 30 percent of the underlying geology is considered vulnerable and more than 20 percent of the land cover is row crop agriculture. These are not rigid criteria, but are instead used as a starting point for creating an initial plan. A map depicting the areas that meet this preliminary criteria is shown in Figure 3. Additional factors such as previous nitrate results and local knowledge of groundwater conditions were, and continue to be, used to prioritize townships for testing.

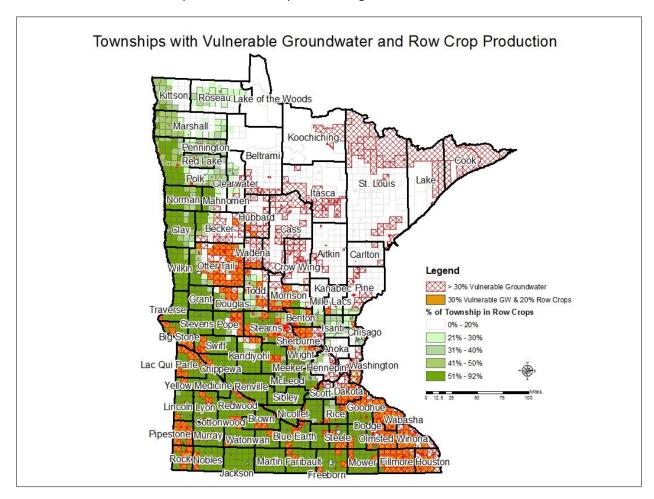


Figure 3. Minnesota Townships with Vulnerable Groundwater and Row Crop Production

Aquifer sensitivity ratings from the Minnesota Department of Natural Resources were used to estimate the percentage of geology vulnerable to groundwater contamination. The same geologic mapping project presented in Figure 2 was used to classify the state into aquifer sensitivity ratings. There are three ratings for aquifer sensitivity: low, medium, and high. Sensitivity ratings are described in Table 1. The ratings are based upon guidance from the Geologic Sensitivity Project Workshop's report "Criteria

and Guidelines for Assessing Geologic Sensitivity in Ground Water Resources in Minnesota" (MDNR, 1991). A map of Rice County depicting the aquifer vulnerabilities is shown in Figure 4.

Table 1. Vulnerability Ratings Based on the Geomorphology of Minnesota, Sediment Association Layer

Sediment Association	Sensitivity/Vulnerability Rating				
Alluvium, Bedrock Dominated, Ice Contact, Outwash, Terrace	High				
Lacustrine, Peat, Supraglacial Drift Complex	Medium				
Till Plain	Low				

The National Agriculture Statistics Service data (USDA NASS, 2013) on cropland was used to determine the percentage of row crop agriculture. A map and table depicting the extent of the cropland in Rice County can be found in Appendix C (Figure 9, Table 14). On average 53 percent of the land cover was row crop agriculture.

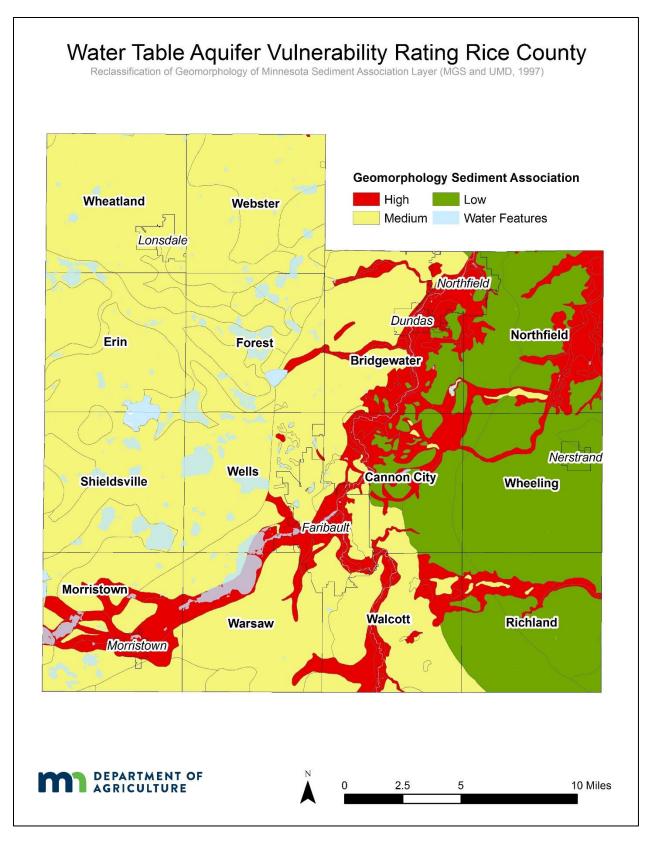


Figure 4. Water Table Aquifer Vulnerability Rating in Rice County

PRIVATE WELL SAMPLING - NITRATE

The testing is done in two steps in each township: "initial" sampling and "follow-up" sampling. The initial nitrate sampling was conducted in 2017. In the initial sampling, all private well owners in the selected townships are sent a nitrate test kit. These kits include instructions on how to collect a water sample, a sample bottle, a voluntary survey, and a prepaid mailer. Each homeowner was mailed the nitrate result for their well along with an explanatory nitrate brochure (Appendix D). Well water samples were collected by 478 homeowners using the mail-in kit (Table 2). These 478 samples are considered the "initial well dataset". On average, 34 percent of the homeowners in these townships responded to the free nitrate test offered by MDA.

All of the homeowners with a nitrate detection from the initial sampling were asked to participate in a follow-up well site visit and sampling. The well site visit and follow-up sampling was conducted in 2018 by MDA staff. A total of 67 follow-up samples were analyzed (Table 2).

Table 2. Homeowner Participation in Initial and Follow-Up Well Water Sampling, Rice County

Township	Kits Sent	Initial Well Dataset	Well Site Visits & Follow-Up Sampling Conducted
Bridgewater	534	189	27
Cannon City	338	113	9
Morristown	242	68	4
Northfield	275	108	27
Total	1,389	478	67

Each follow-up visit was conducted at the well site by a trained MDA hydrologist. Well water was purged from the well for 15 minutes before a sample was collected to ensure a fresh water sample. Additionally, precautions were taken to ensure no cross-contamination occurred. A more thorough explanation of the sampling process is described in the sampling and analysis plan (MDA, 2018). As part of the follow-up sampling, homeowners were offered a no cost pesticide test. As pesticide results are finalized, they will be posted online in a separate report (www.mda.state.mn.us/pwps).

The well site visit was used to collect information on potential nitrogen point sources, well characteristics (construction type, depth, and age), and the integrity of the well construction. Well site visit information was recorded on the Private Well Field Log & Well Survey Form (Appendix A).

WELL ASSESSMENT

All wells testing higher than 5 mg/L were carefully examined for potential well construction issues, potential point sources, and other potential concerns.

Using the following criteria, a total of 50 wells were removed to create the final well dataset. See Appendix E (Tables 17 and 18) for a summary of the removed wells.

HAND DUG

All hand dug wells were excluded from the dataset, regardless of the nitrate concentration. Hand dug wells do not meet well code and are more susceptible to local surface runoff contamination. Hand dug wells are often very shallow, typically just intercepting the water table, and therefore are much more sensitive to local surface runoff contamination (feedlot runoff), point source pollution (septic system effluent), or chemical spills.

POINT SOURCE

Well code in Minnesota requires wells to be at least 50 feet away from most possible nitrogen point sources such as SSTS (septic tanks and drain fields), animal feedlots, etc. Wells with a high nitrate (>5 mg/L) concentration that did not maintain the proper distance from these point sources were removed from the final well dataset. Information gathered from well site visits was used to assess these distances. If a well was not visited by MDA staff, the well survey information provided by the homeowner and aerial imagery was reviewed.

WELL CONSTRUCTION PROBLEM

The well site visits allowed the MDA staff to note the well construction of each well. Some wells had noticeable well construction problems. For instance, wells with a cap missing or a crack in the cap makes the groundwater in that well susceptible to pollution. Other examples include wells buried underground or wells with cracked casing. Wells with significant problems such as these were excluded from the final well dataset.

UNSURE OF WATER SOURCE

If the water source of the sample was uncertain, or from an unwanted source, then data pertaining to the sample was removed. For example, these samples include water that may have been collected from an indoor tap with a reverse osmosis system. Water samples that were likely collected from a municipal well were also removed from the dataset. This study examines raw well water not treated water or municipal water.

SITE VISIT COMPLETED - WELL NOT FOUND & CONSTRUCTED BEFORE 1975 OR AGE UNKNOWN & NO WELL ID

Old wells with no validation on the condition of well construction were removed from the dataset. These wells were installed before the well code was developed in Minnesota (mid-1975), did not have a

well log, and MDA staff could not locate the well during a site visit. Additionally, if the age of the well could not be determined it was assumed to an older well.

NO SITE VISIT & CONSTRUCTED BEFORE 1975 OR AGE UNKNOWN & NO WELL ID

Site visits were not conducted at locations where the homeowner did not return a signed consent form to the MDA. If no site visit was conducted, and the well is an older well (pre-1975), the well would not be used in the final analysis. If the age of the well could not be determined, these were again assumed to be older wells.

NO SITE VISIT & INSUFFICIENT DATA & NO WELL ID

Wells that were clearly lacking necessary background information were also removed from the final well dataset. These wells did not have an associated well log, were not visited by MDA staff, and the homeowner did not fill out the initial well survey or the address could not be found. Again site visits were not conducted at these locations because the homeowner did not return a signed consent form to the MDA.

SHARED WELL

Several homes in Rice County share their domestic drinking water wells. Only one result per well was kept in the final dataset, and any additional samples from the same well were removed.

INITIAL RESULTS

INITIAL WELL DATASET

A total of 478 well owners returned water samples for analysis across the four townships (Figure 5). These wells represent the initial well dataset.

The following paragraphs provide a brief discussion of the statistics presented in Table 3.

The minimum values of nitrate for all townships were less than the detection limit (<DL) which is 0.03 mg/L. Northfield Township was the only township with a median nitrate value greater than detection limit at 0.15 mg/L. The 90th percentiles range from 0.54 mg/L (Cannon City Township) to 13.28 mg/L (Northfield Township). The maximum values range from 10.20 to 37.8 mg/L, with Northfield Township having the highest result

Initial results from the sampling showed that in Northfield Township ten percent or more of the wells were at or over 10 mg/L nitrate. The township testing results contrast findings from a 2010 USGS report on nitrate concentrations in private wells in the glacial aquifer systems across the upper United States (US) in which less than five percent of sampled private wells had nitrate concentrations greater than 10 mg/L (Warner and Arnold, 2010). Data from the Township Testing Program suggests that private well water in Northfield Township is more heavily impacted by nitrate than other areas of the upper United States. Both the USGS and the township testing studies indicate that nitrate concentrations can vary considerably over short distances.

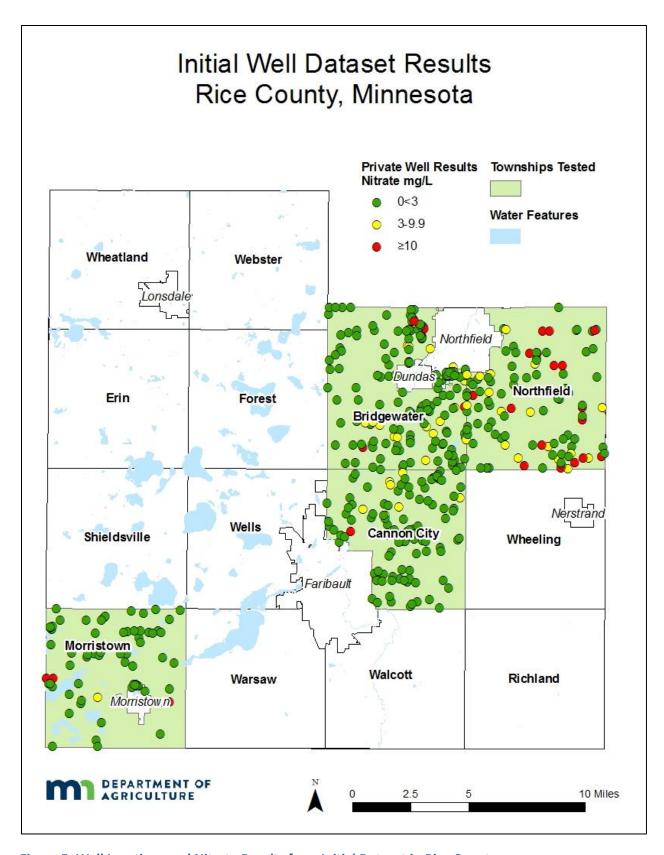


Figure 5. Well Locations and Nitrate Results from Initial Dataset in Rice County

Table 3. Rice County Township Testing Summary Statistics for Initial Well Dataset

		Values			Percentiles				Number of Wells				Percent of Wells						
Township	Total Wells	Min	Max	Mean	Median	75th	90th	95th	99th	<3	3<10	≥5	≥7	≥10	<3	3<10	≥5	≥7	≥10
	Wells							N	litrate-N r	ng/L or	PPM								
Bridgewater	189	<0.03	13.80	1.22	<0.03	0.63	5.61	7.10	11.38	159	25	20	10	5	84%	13%	11%	5%	3%
Cannon City	113	<0.03	10.20	0.50	<0.03	<0.03	0.54	4.48	9.05	105	7	5	3	1	93%	6%	4%	3%	1%
Morristown	68	<0.03	17.00	0.80	<0.03	<0.03	0.66	8.38	16.01	64	1	4	4	3	94%	1%	6%	6%	4%
Northfield	108	<0.03	37.80	4.20	0.15	7.01	13.28	17.46	30.14	69	21	36	27	18	64%	19%	33%	25%	17%
Total	478	<0.03	37.80	1.66	<0.03	0.44	6.70	10.40	18.45	397	54	65	44	27	83%	11%	14%	9%	6%

The 50th percentile (75th, 90th, 95th, and 99th) is the value below which 50 percent (75%, 90%, 95%, and 99%) of the observed values fall.

ESTIMATES OF POPULATION AT RISK

The human population at risk of consuming well water at or over the HRL of 10 mg/L nitrate was estimated based on the sampled wells. An estimated 237 people in Rice County's study area have drinking water over the nitrate HRL (Table 4). Nitrate contamination is a significant problem for many wells in Rice County.

Table 4. Estimated Population with Water Wells Over 10mg/L Nitrate-N, Rice County

Township	Estimated 2017 Households on Private Wells*	Estimated 2017 Population on Private Wells*	Estimated Population ≥10 mg/L Nitrate-N**
Bridgewater	1,819	689	48
Cannon City	1,272	466	11
Morristown	722	278	32
Northfield	874	315	146
Total	4,687	1,748	237

^{*}Data collected from the Minnesota State Demographic Center, 2018

WELL SETTING AND CONSTRUCTION

MINNESOTA WELL INDEX AND WELL LOGS

The Minnesota Well Index (MWI) (formerly known as the "County Well Index") is a database system developed by the Minnesota Geological Survey and the Minnesota Department of Health (MDH) for the storage, retrieval, and editing of water-well information. The database contains basic information on well records (e.g. location, depth, static water level) for wells constructed in Minnesota.

The database also contains information on the well log and the well construction for many private drinking water wells. The MWI is the most comprehensive Minnesota well database available, but contains only information for wells in which a well log is available. Most of the records in MWI are for wells drilled after 1974, when water-well construction code required well drillers to submit records to the MDH (MGS, 2012). The MWI does contain data for some records obtained by the MGS through the cooperation of drillers and local government agencies for wells drilled before 1974 (MDH, 2018).

In some cases, well owners were able to provide unique well identification numbers for their wells. When the correct unique IDs are provided, a well log can be used to identify the aquifer that the well withdraws water from. The well logs were obtained from the MWI for 150 documented wells (Table 5). Therefore, approximately 31 percent of the sampled wells had corresponding well logs with an aquifer identified. Thus, the data gathered on aquifers represents approximately one-third of the total sampled wells.

^{**}Estimates based off of the 2017 estimated households per township gathered from Minnesota State Demographic Center and percentage of wells at or over the HRL from the initial well dataset

The aquifers in Table 5 are arranged from the geologically youngest units on the top to the older units, with the exception of the Ordovician undifferentiated aquifers. According to the well log data, the most commonly utilized aquifers in the county are the Prairie Du Chien and Jordan aquifers. This predominance of these aquifers reflects the overall findings for all documented wells in the study area (Appendix F, Table 19). The average well depth was 263 feet deep.

Below is a brief description of the aquifers characterized in Table 5:

The Quaternary Buried artesian aquifers are shallow unconsolidated sand and gravel deposits covered by confining materials (typically clay) that are more than 10 feet thick. They are the youngest aquifers identified in Rice County. These aquifers are under pressure resulting from the above confining layer.

The aquifers within the St. Peter formation consist of fine to medium grained, well sorted quartzose sand. This layer of sand is easily eroded so it not often exposed at the surface (MPCA, 1999).

The Prairie du Chien aquifers are within the Oneota Dolomite and Shakopee Formations. Both consist of thin- to thick-bedded dolomite. The groundwater within these aquifers flows towards the Mississippi River (MPCA, 1999).

The Jordan aquifers are within fine to medium grained sandstone. This sandstone range from massive or thick-bedded to thin bedded. And like the Prairie du Chien, the groundwater within these aquifers flows towards the Mississippi River (MPCA, 1999).

Table 5. Nitrate Concentrations within Sampled Groundwater Aquifers

			Nu	mber of v	wells	Perc	ells	
Aquifer Group/Formation	Total Wells	Ave Depth (Feet)	<3	3<10	≥10	<3	3<10	≥10
					Nitrat	te-N mg/L		
Quaternary Buried Artesian	3	86	3	0	0	100.0%	0.0%	0.0%
St. Peter Formation	6	194	4	1	1	66.7%	16.7%	16.7%
Prairie Du Chien Group	37	240	35	1	1	94.6%	2.7%	2.7%
Ordovician, Undifferentiated	1	220	1	0	0	100.0%	0.0%	0.0%
Jordan	18	372	17	1	0	94.4%	5.6%	0.0%
Not Available	85	262	79	5	1	92.9%	5.9%	1.2%
Total	150	263	139	8	3	92.7%	5.3%	2.0%

WELL OWNER SURVEY

The private well owner survey, sent out with the sampling kit, provided additional information about private wells that were sampled. The survey included questions about the well construction, depth and age, and questions about nearby land use. A blank survey from the initial sampling in 2017 can be found in Appendix G. It is important to note that well information was provided by the well owners and may be approximate or potentially erroneous. The following section is a summary of information gathered from the well owner survey. Complete well survey results are located in Appendix H at the end of this document, (Tables 20-34).

The majority of wells in each township are located on "rural" property. In Morristown Township a significant number of wells (10.3 percent) were located on lake home properties, and in Bridgewater Township 12 percent of properties were located in subdivisions.

Approximately 72.8 percent of sampled wells are of drilled construction and 2.5 percent are sand point wells. Sand point (also known as drive-point) wells are typically completed at shallower depths than drilled wells. Sand point wells are also usually installed in areas where sand is the dominant geologic material and where there are no thick confining units such as clay. This makes sand point wells more vulnerable to contamination from the surface. As mentioned previously, hand dug wells are also shallow and more sensitive to local surface runoff contamination than deeper drilled wells. There was one hand dug well in the county. Hand dug wells tend to be shallow and thus more susceptible to contamination.

Most of the sampled wells are between 100-299 feet deep (33 percent of wells) or greater than 300 feet deep (18.2 percent of wells). Shallower wells are less common, with 12 percent of wells being 50-99 feet, 5 percent of wells being 16-49 feet, and 0.4 percent of wells being 0-15 feet deep.

Most of the wells (66.3 percent) had not been tested for nitrate within the last ten years or homeowners were unsure if they had been tested. Only five percent reported that their well had been tested for nitrate in the last year. Therefore, the results most homeowners receive from this study will provide new information.

POTENTIAL NITRATE SOURCE DISTANCES

The following summary relates to isolation distances of potential point sources and non-point sources of nitrate that may contaminate wells. This information was obtained from the well surveys completed by the homeowner. Complete well survey results are located in Appendix H at the end of this document (Tables 20-34).

- On average, farming takes place on 32.6 percent of the properties.
- Agricultural fields are less than 300 feet from wells at about 14.1 percent of the properties.
- The majority of well owners (81.2 percent) across all the townships responded that they have do not livestock (greater than ten head of cattle or other equivalent) on their property.
- The majority of wells (57.3 percent) are over 300 feet from an active or inactive feedlot.
- Very few well owners (0.6 percent) across all townships store more than 500 pounds of fertilizer on their property.
- A small minority of wells (2.5 percent) are less than 50 feet away from septic systems.

FINAL RESULTS

FINAL WELL DATASET

A total of 478 well water samples were collected by homeowners across four townships. Fifty wells (10.5 percent) were found to be unsuitable and were removed to create the final well dataset. The final analysis was conducted on the remaining 428 wells (Table 6). The wells in the final well dataset represent drinking water wells potentially impacted by applied commercial agricultural fertilizer.

WELL WATER NITROGEN ANALYSIS

The final analysis was based on the number of wells at or over the nitrate HRL of 10 mg/L.

Table 6 shows the results for all townships sampled. The percent of wells at or over the HRL for the final well dataset ranged from 0 to 5.1 percent.

Table 6. Initial and Final Well Dataset Results, Rice County

Township	Initial Well Dataset	Final well	Final Wells ≥10 mg/L Nitrate-N				
Township	illitidi weli Dataset	Dataset	Count	Percentage			
Bridgewater	189	177	2	1.1%			
Cannon City	113	107	0	0.0%			
Morristown	68	65	1	1.5%			
Northfield	108	79	4	5.1%			
Total	478	428	7	1.6%			

The individual nitrate results from this final well dataset are displayed spatially in Figure 6. Due to the inconsistencies with geocoding the locations, the accuracy of the points is variable.

The final well dataset summary statistics are shown in Table 7. The minimum values were all below the detection limit. The maximum nitrate values ranged from 8.4 mg/L (Cannon City Township) to 22.0 mg/L (Northfield Township). The 90th percentile nitrate values ranged from 0.16 mg/L (Cannon City Township) to 6.04 mg/L (Northfield Township).

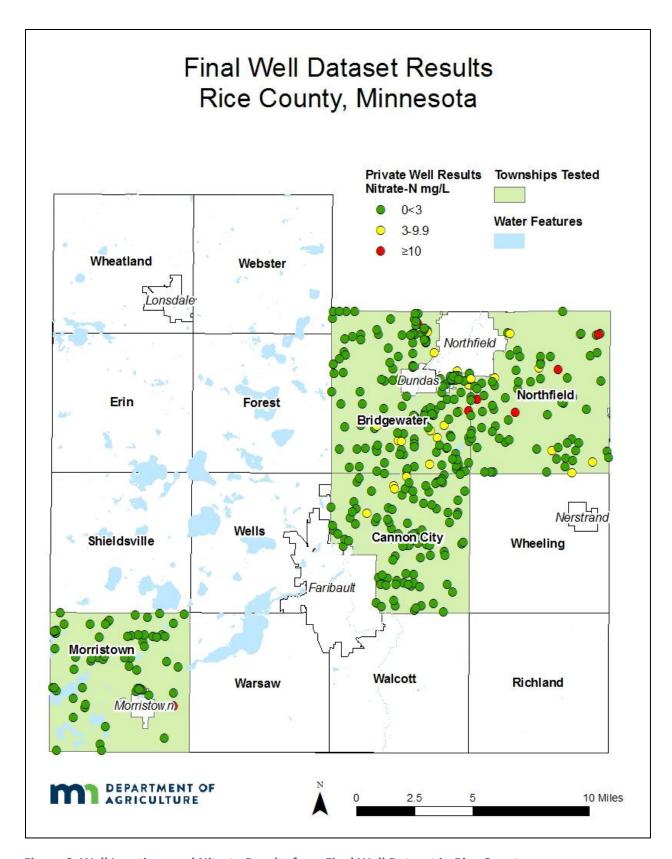


Figure 6. Well Locations and Nitrate Results from Final Well Dataset in Rice County

Table 7. Rice County Township Testing Summary Statistics for Final Well Dataset

		Values			Percentiles				Number of Wells				Percent of Wells						
Township	Total Wells	Min	Max	Mean	50 th (Median)	75th	90th	95th	99th	<3	3<10	≥5	≥7	≥10	<3	3<10	≥5	≥7	≥10
			Nitrate-N mg/L or parts per million (ppm)																
Bridgewater	177	<0.03	13.8	0.78	<0.03	0.10	3.13	5.54	9.70	159	16	9	5	2	89.8%	9.0%	5.1%	2.8%	1.1%
Cannon City	107	<0.03	8.4	0.28	<0.03	<0.03	0.16	1.80	7.83	103	4	2	2	0	96.3%	3.7%	1.9%	1.9%	0.0%
Morristown	65	<0.03	10.8	0.27	<0.03	<0.03	0.40	0.80	9.53	64	0	1	1	1	98.5%	0.0%	1.5%	1.5%	1.5%
Northfield	79	<0.03	22.0	1.49	<0.03	0.61	6.04	9.80	19.51	67	8	9	6	4	84.8%	10.1%	11.4%	7.6%	5.1%
Total	428	<0.03	22.0	0.71	<0.03	0.05	1.87	5.01	11.00	393	28	21	14	7	91.8%	6.5%	4.9%	3.3%	1.6%

<DL stands for less than detectable limit. The detectable limit is <0.03 to nitrate-N. The 50th percentile (75th, 90th, 95th, and 99th, respectively) is the value below which 50 percent (75%, 90%, 95% and 99%) of the observed values fall

As discussed previously, the areas selected were deemed most vulnerable to nitrate contamination of groundwater. Table 8 compares the final results to the percent of vulnerable geology (MDNR, 1991) and row crop production (USDA NASS, 2013) in each township. The percent land area considered vulnerable geology and in row crop production was estimated using a geographic information system known as ArcGIS.

Table 8. Township Nitrate Results Related to Vulnerable Geology and Row Crop Production, Rice County

	Final Well	Percent of Land in	Percent of Land	Percent ≥7 mg/L	Percent ≥10 mg/L			
Township	Dataset	Row Crop Production 2013*	in Vulnerable Geology	Nitrate-N mg/L or parts per million (ppm)				
Bridgewater	177	51.1%	29.0%	2.8%	1.1%			
Cannon City	107	49.7%	34.7%	1.9%	0.0%			
Morristown	65	41.9%	30.3%	1.5%	1.5%			
Northfield	79	67.9%	36.3%	7.6%	5.1%			
Total	428	52.7%	32.6%	3.3%	1.6%			

^{*}Data retrieved from USDA NASS Cropland Data Layer, 2013

WELL AND WATER CHARACTERISTICS

WELL CONSTRUCTION

Unique identification numbers from well logs were compiled for the wells in the Rice County final well dataset. The well logs provided information on the well age, depth, and construction type (MDH Minnesota Well Index Database; https://apps.health.state.mn.us/cwi/). These well characteristics for the final well dataset were also provided by some homeowners. The well characteristics are described below and a more comprehensive view is provided in Appendix I (Tables 35-37).

- The majority of wells were drilled (82 percent), and only 5 wells (1 percent) were identified as sand point wells.
- The median depth of wells was 270 feet, and the deepest was 600 feet.
- The median year the wells were constructed in was 1998.

WELL WATER PARAMETERS

MDA staff conducted the follow-up sampling and well site surveys at 67 wells. 55 follow-up wells are included in the final well dataset. Field measurements of the well water parameters were recorded on the first page of the Private Well Field Log & Well Survey Form (Appendix J). Starting in 2018, an electronic version of this form was used, and it incorporated all the same information as the paper form. The measurements included temperature, pH, specific conductivity, and dissolved oxygen. The well was purged for 15 minutes, so that the measurements stabilized, ensuring a fresh sample of water was collected. The stabilized readings for the final well dataset are described below and a more comprehensive view is available in Appendix K (Tables 38-41).

- The temperatures ranged from 8.86°C to 12.53 °C
- The median specific conductivity was 750 μS/cm, and was as high as 1,229 μS/cm
- The water from the wells had a median pH of 7.24
- The dissolved oxygen readings ranged from 0.09 mg/L to 9.08 mg/L

Water temperature can affect many aspects of water chemistry. Warmer water can facilitate quicker chemical reactions, and dissolve surrounding rocks faster; while cooler water can hold more dissolved gases such as oxygen (USGS, 2016).

Specific conductance is the measure of the ability of a material to conduct an electrical current at 25°C. Thus the more ions present in the water, the higher the specific conductance measurement (Hem, 1985). Rainwater and freshwater range between 2 to 100 μ S/cm. Groundwater is between 50 to 50,000 μ S/cm (Sanders, 1998).

The United States Environmental Protection Agency has set a secondary pH standard of 6.5-8.5 in drinking water. These are non-mandatory standards that are set for reasons not related to health, such as taste and color (40 C.F.R. §143).

Dissolved oxygen concentrations are important for understanding the fate of nitrate in groundwater. When dissolved oxygen concentrations are low (<0.5 mg/L) (Dubrovsky et al., 2010), bacteria will use electrons on the nitrate molecule to convert nitrate into nitrogen gas (N_2). Thus nitrate can be removed from groundwater through the process known as bacterial denitrification (Knowles, 1982).

SUMMARY

The focus of this study was to assess nitrate concentrations in groundwater impacted by commercial agriculture fertilizer in selected townships in Rice County. In order to prioritize testing, the MDA looked at townships with significant row crop production and vulnerable geology. Approximately 53 percent of the land cover is row crop agriculture, and there are 1,660 acres (1.9 percent of land cover) of groundwater irrigation in the study area.

Four townships were sampled covering a little more than 89,500 acres. The initial (homeowner collected) nitrate sampling resulted in 478 samples. The 478 households that participated represent, approximately, a 34 percent return rate of homeowner offered sampling kits. Well owners with measureable nitrate results were offered a follow-up nitrate sample and a pesticide sample. The MDA visited and collected follow-up samples at 67 wells.

The MDA conducted a nitrogen source assessment and identified wells near potential point sources and wells with poor construction. A total of 50 (10.5 percent) wells were found to be unsuitable and were removed from the initial well dataset of 478 wells. The remaining 428 wells were wells believed to be impacted by nitrogen fertilizer and were included in the final well dataset.

In the final well dataset the majority of wells (82 percent) are drilled; about one percent are sand points. The median depth of the wells is 270 feet and depths range from 66 to 600 feet.

For the final well dataset, no township had more than 10 percent of wells at or over the nitrate Health Risk Limit of 10 mg/L. The percent of wells at or over the nitrate Health Risk Limit in each township ranged from 0 to 5.1 percent.

REFERENCES

- Campion, M. (1997a). Plate 8- Bedrock Hydrogeology. *C-9, Geologic Atlas of Rice County, Minnesota, Part B.* Minnesota Department of Natural Resources. Retrieved from https://files.dnr.state.mn.us/waters/groundwater-section/mapping/cga/c09-rice/pdf-files/Plate08.pdf.
- Campion, M. (1997b). Plate 9- Sensitivity to pollution of the St. Peter-Prairie Du Chien-Jordan and St. Lawrence-Franconia Aquifers. *C-9, Geologic Atlas of Rice County, Minnesota, Part B.* Minnesota Department of Natural Resources. Retrieved from https://files.dnr.state.mn.us/waters/groundwater-section/mapping/cga/c09-rice/pdf-files/Plate09.pdf.
- Campion, M., & Wetzel, T. (1997). Plate 7- Water-Table Hydrogeology. *C-9, Geologic Atlas of Rice County, Part B.* Minnesota Department of Natural Resources. Retrieved from https://files.dnr.state.mn.us/waters/groundwater-section/mapping/cga/c09-rice/pdf-files/Plate07.pdf.
- Dubrovsky, N., Burow, K.R., Clark, G.M., Gronberg, J.M., Hamilton, P.A., Hitt, K.J., Mueller, D.K., Munn, M.D., Nolan, B.T., Puckett, L.J., Rupert, M.G., Short, T.M., Spahr, N.E., Sprague, L.A., & Wilber, W.G. (2010). *The quality of our nation's water: Nutrients in the nation's streams and groundwater, 1992-2004* (U.S. Geological Survey Fact Sheet 2010-3078). U.S. Geological Survey. Retrieved from https://pubs.usgs.gov/fs/2010/3078/.
- Hem, J.D. (1985). Study and interpretation of the chemical characteristics of natural water. (Water Supply Paper 2254). Alexandria, VA: U.S. Department of the Interior, Geological Survey.
- Hernandez, Jose & A. Schmitt, Michael. (2012). Manure Management in Minnesota. 10.13140/RG.2.2.12053.73447.
- Hobbs, H.C., Lusardi, B.A., & Patterson, C.J. (1995). Plate 4- Quaternary Statigraphy. *C-9, Geologic Atlas of Rice County, Minnesota, Part A.* Minnesota Geological Survey. Retrieved from https://conservancy.umn.edu/bitstream/handle/11299/58514/c9 plt4 quatstrat%5b1%5d.pdf? sequence=5&isAllowed=y.
- Knowles, R. (1982). Denitrification. Microbiology. Rev. 46 (1), 43-70.
- Minnesota Department of Agriculture [MDA]. (2017). *Agricultural Chemical Incidents* [Data file]. Retrieved from gisdata.mn.gov/dataset/env-agchem-incidents.
- Minnesota Department of Agriculture [MDA]. (2018). Township Testing Program Sampling and Analysis Plan. Available Upon Request.
- Minnesota Department of Health [MDH], Well Management Section. (2014). Well Owner's Handbook A Consumer's Guide to Water Wells in Minnesota. St. Paul, MN: Minnesota Department of Health. Retrieved from https://www.health.state.mn.us/communities/environment/water/docs/wells/construction/handbook.pdf.

- Minnesota Department of Health [MDH]. (2018). Minnesota Well Index. Retrieved from https://www.health.state.mn.us/mwi.
- Minnesota Department of Natural Resources [MDNR]. (1991). Criteria and guidelines for assessing geologic sensitivity of ground water resources in Minnesota, St. Paul, MN: Minnesota Department of Natural Resources. Retrieved from https://files.dnr.state.mn.us/waters/groundwater_section/mapping/sensitivity/docs/assessing-geologic_sensitivity.pdf.
- Minnesota Department of Natural Resources [MDNR]. (2017). *Minnesota Water Use Data* [Data File]. Retrieved from dnr.state.mn.us/waters/watermgmt_section/appropriations/wateruse.html.
- Minnesota Department of Natural Resources [MDNR]. (2018). DNR Water Permits. Retrieved from www.dnr.state.mn.us/permits/water/index.html.
- Minnesota Department of Natural Resources, Minnesota Geologic Survey, and University of Minnesota Duluth [MDNR, MGS, and UMD]. (1997). Geomorphology of Minnesota [map]. (ca. 1:100,000).
- Minnesota Geologic Survey [MGS]. (2012). County Atlas Website. St. Paul, MN: Minnesota Geologic Survey. Retrieved from www.mngs.umn.edu/county atlas/countyatlas.htm.
- Minnesota Pollution Control Agency [MPCA]. (1999). Baseline Water Quality of Minnesota's Principal Aquifers, Region 5, Southeast Minnesota. Retrieved from https://www.pca.state.mn.us/sites/default/files/baselinese-rpt.pdf.
- Minnesota Pollution Control Agency [MPCA]. (2011). Land Application of Manure: Minimum State Requirements (wq-f8-11). St. Paul, MN: Minnesota Pollution Control Agency. Retrieved from www.pca.state.mn.us/sites/default/files/wq-f8-11.pdf.
- Minnesota Pollution Control Agency [MPCA]. (2013a). Compliance Inspections for Subsurface Sewage Treatment Systems (SSTS) (wq-wwists4-39). St. Paul, MN: Minnesota Pollution Control Agency. Retrieved from https://www.pca.state.mn.us/sites/default/files/wq-wwists4-39.pdf.
- Minnesota Pollution Control Agency [MPCA]. (2013b). *Nitrogen in Minnesota Surface Waters:*Conditions, trends, sources, and reductions (wq-s6-26a). St. Paul, MN: Minnesota Pollution Control Agency. Retrieved from www.pca.state.mn.us/sites/default/files/wq-s6-26a.pdf.
- Minnesota Pollution Control Agency [MPCA]. (2015). *State of Minnesota General Animal Feedlots NPDES Permit* (wq-f3-53). St. Paul, MN: Minnesota Pollution Control Agency. Retrieved from www.pca.state.mn.us/sites/default/files/wq-f3-53.pdf.
- Minnesota Pollution Control Agency [MPCA]. (2017a). Feedlot Registration Form (wq-f4-12). St. Paul, MN: Minnesota Pollution Control Agency. Retrieved from www.pca.state.mn.us/quick-links/registration-permits-and-environmental-review.
- Minnesota Pollution Control Agency [MPCA]. (2017b). *Livestock and the Environment: MPCA Feedlot Program Overview* (wq-f1-01). St. Paul, MN: Minnesota Pollution Control Agency. Retrieved from www.pca.state.mn.us/sites/default/files/wq-f1-01.pdf.

- Minnesota Pollution Control Agency [MPCA]. (2018a). 2017 SSTS Annual Report, Subsurface Sewage Treatment Systems in Minnesota. St. Paul, MN: Minnesota Pollution Control Agency. Retrieved from www.pca.state.mn.us/sites/default/files/wq-wwists1-58.pdf.
- Minnesota Pollution Control Agency [MPCA]. (2018b). Feedlots in Minnesota [Data file]. St. Paul, MN: Minnesota Pollution Control Agency. Retrieved from https://gisdata.mn.gov/dataset/env-feedlots.
- Minnesota State Demographic Center [Minnesota SDC]. (2018). *Latest annual estimates of Minnesota and its cities and townships' population and households, 2017* [Data file]. Retrieved from https://mn.gov/admin/demography/data-by-topic/population-data/our-estimates/pop-finder2.jsp.
- Minnesota Statutes 2015, section 115.55, subdivision 5.
- National Secondary Drinking Water Regulations, 40 C.F.R. §143 (2011).
- Nolan, B.T., & Stoner, J.D. (2000). Nutrients in Groundwaters of the Conterminous United States, 1992-95. *Environmental Science and Technology*, *34*(7), 1156-1165. Retrieved from https://doi.org/10.1021/es9907663.
- Patterson, C.J., & Hobbs, H.C. (1995). Plate 3-Surficial Geology. *C-9, Geologic Atlas of Rice County, Minnesota, Part A.* Minnesota Geological Survey. Retrieved from https://conservancy.umn.edu/bitstream/handle/11299/58514/c9 plt3 surficial%5b1%5d.pdf?s equence=6&isAllowed=y.
- Rice County Environmental Services. 2017. When is a septic evaluation required in Rice County?

 Faribault, MN: Rice County Environmental Services. Retrieved from:

 https://www.co.rice.mn.us/DocumentCenter/View/1935/When-is-a-Septic-Evaluation-Required-in-Rice-County.
- Sanders, L.L. (1998). A Manual of Field Hydrogeology. Upper Saddle River, NJ: Prentice Hall.
- United States Environmental Protection Agency [US EPA]. (2009). *National primary drinking water* regulations list (EPA 816-F-09-004). Retrieved from www.epa.gov/sites/production/files/2016-06/documents/npwdr complete table.pdf.
- United States Geological Survey [USGS]. (2016). *Water properties: Temperature*. Retrieved from https://water.usgs.gov/edu/temperature.html.
- United States Department of Agriculture National Statistics Service [USDA NASS]. (2013). *Cropland Data Layer*, 2013 [Data file]. Retrieved from https://gisdata.mn.gov/dataset/agri-cropland-data-layer-2013.
- Warner, K.L., & Arnold, T.L. (2010). *Relations that Affect the Probability and Prediction of Nitrate Concentration in Private Wells in the Glacial Aquifer System in the United States* (Scientific Investigations Report 2010-5100). Reston, VA: U.S. Geological Survey. Retrieved from https://pubs.usgs.gov/sir/2010/5100/pdf/sir2010-5100.pdf.

APPENDIX A

Well information and Potential Nitrate Source Inventory Form

	Unique ID MDA -Private Well F	ield Log &	Well Surve	y Form		
Vater Treatment Info		<u>U</u>				
1. Is this well used for		□ Yes	□ No			
2. Is there an indoor wa		□ Yes	□ No			
If yes, check syster	n: □ Activa	☐ Activated Carbon ☐ Reverse Osmosis ☐ Other			☐ Iron Filter	
	□ Revers			t Filter	☐ Softened	
	☐ Other_					
3. Is there water treatm	nent on the outdoor spigot?		□ Yes	□ No		
	If yes, wh	at type?				
Well Construction Inf	ormation					
Well Constitution in	1	Homeowne	er or Observat	tion	XV II Y	
	HO Survey		one or both)		Well Log	
Construction Type					1	
Construction Date						
Well Depth						
Well Diameter						
Well/Pump Installer						
	1					
1. Have you made any	changes to your well in the	last year?	□ Yes	□ No		
If yes, what type?			sed Well	□ Rer	☐ Replaced Piping	
	☐ Replaced Pump	1970.	☐ Replaced Well		er	
	□ Replaced Fullip	□ Кер	naced wen		C1	
Field Survey Informat	ion					
1. Are there any other v	vells on this property?		□ Yes	□ No		
If yes, list well type	, use, and UID if available_					
2. Is fertilizer stored on		□ Yes	□ No			
If yes, what is the di	istance and direction from t	he well?				
3. Historical fertilizer s		☐ Yes	□ No			
If yes, what is the di	istance and direction from t	he well?				
4. Historic/Abandoned	· · · · · - · · · · · · · · · · · · · · · · · · ·		□ Yes	□ No		
	istance and direction from t	he well?	00 - 00 - 00 -		2	
•	used in the last month?		☐ Yes	□ No		
If yes, what type/bra	and name, when, and location	on				

Site ID	Unique ID MDA -Private Well Fig	Da	ıte			
	MDA -Private Well Fig	eld Log &	Well Surve	y Form		
DIRECTIONS Describe the typ to draw in and la	be, position and distance to potential abel nitrate sources relative to the we	nitrate sourcell (center do	es within 300 ot). Indicate ho	feet of the well. Use location when	Jse the bullseyen applicable.	
AFL: Animal Feedlot AGG: Dry Well, Leaching Pit, Seepage Pit, Injection Well, Ag Drainage Well APB: Animal/Poultry Building DRA: Drain field - Above or Below Grade FIELD: Agricultural Field FSA: Fertilizer Storage Area		FWP: Feeding or Watering Area GOLF: Golf Course LAP: Land Application of Manure, Septage, Sewage MSA: Manure Storage Area PRV: Privy (Old Outhouse) SAA: Small Animal Area (chicken coop, rabbit pen, etc) SET: Septic Tank				
6. Does water of	drain toward the well?		□ Yes	□ No		
7. Which direct	tion does the landscape slope? (Drav	v arrow acro	ss bullseye thr	ough well)		
8. Is the slope:			☐ Steep	☐ Shallow	☐ Flat	
	y obvious problems with the well? ny well issues seen			□ No Access	□ Not Found	
	m ground surface to bottom of well as, distances, and direction (<300ft)_					
12. Source code	s, distances, and direction (>300ft)_	N		300+		
12. Source code	W distances, and direction (>300ft)_	9000.1	200	E		
		N 15	_			

APPENDIX B

SUBSURFACE SEWAGE TREATMENT SYSTEM

Most homes that have private wells also have private subsurface sewage treatment systems (SSTS). These treatment systems can be a potential point source for contaminants such as nitrate and fecal material. To protect drinking water supplies in Minnesota, SSTS septic tanks and the associated drain fields are required to be at least 50 feet away from private drinking water wells. The minimum required distance doubles for wells that have less than ten feet of a confining layer or if the well has less than 50 feet of watertight casing (MDH, 2014).

Technical and design standards for SSTS systems are described in Minnesota Rules Chapter 7080 and 7081. Some local government units (LGU) have their own statutes that may be more restrictive or differ from these standards.

Many LGUs collect information on the condition of SSTS in their jurisdiction. Often information is collected when a property is transferred, but inspections can occur at other times as well. A SSTS inspection determines if a system is compliant or non-compliant. A non-compliant treatment system can be further categorized as "failing to protect groundwater (FTPGW)" or "imminent threat to public health and safety (ITPHS)". A system is considered FTPGW if it is a seepage pit, cesspool, the septic tanks are leaking below their operating depth, or if there is not enough vertical separation to the water table or bedrock. A system is considered ITPHS if the sewage is discharging to the surface water or groundwater, there is sewage backup, or any other condition where the SSTS would harm the health or safety of the public (Minnesota Statutes, section 115.55.05; MPCA, 2013a).

In 2017 Rice County reported a total of 7,644 SSTS, and 2.4 percent were inspected for compliance (MPCA, 2018a). Compliance inspections are conducted in Rice County during property transfers, which is not a requirement in all counties. Additionally, Rice County performs inspections when construction permits are required for work on the existing system, when a zoning ordinance is requested, when a parcel is split, or when a complaint of an imminent threat to public health or safety is received. If a system is found to be non-compliant, the owner must bring the system into compliance within 12 months. If a system is found to be an imminent threat to public health or safety, the owner must submit a replacement plan within 30 days and the system must be brought into compliance within 10 months (Rice County Environmental Services, 2017).

FEEDLOT

The amount of nitrogen in manure depends on the species of animal. For example, there are approximately 31 pounds of nitrogen in 1,000 gallons of liquid dairy cow manure, and 53-63 pounds in 1,000 gallons of liquid poultry manure. Most of the nitrogen in manure is in organic nitrogen or in ammonium (NH4+) forms (Hernandez and Schmitt, 2012).

Under the right conditions organic nitrogen can be converted into ammonium and then eventually transformed into nitrate. Nitrate is a highly mobile form of nitrogen that can move into groundwater and become a contamination concern (MPCA, 2013b).

Government agencies regulate feedlots to reduce the risk of contamination to water resources. Rules pertaining to feedlots have been in place since the 1970's; they were revised in 2000 and 2014 (MPCA, 2017b). The degree of regulation of a feedlot is dependent on the amount of manure that is produced; measured in animal units (AU) (MPCA, 2011). One AU is equal to the amount of manure produced by one beef cow (Table 9) (MPCA, 2017b).

Table 9. Animal Unit Calculations (MPCA, 2017b)

Animal Type	Number of Animal Units (AU)
Mature dairy cow (over 1,000 lbs.)	1.4
Cow/calf pair	1.2
Stock cow/steer	1.0
Horse	1.0
Dairy heifer	0.7
Swine (55-300 lbs.)	0.3
Sheep	0.1
Broiler (over 5 lbs., dry manure)	0.005
Turkey (over 5 lbs.)	0.018

Animal feedlots with 1-300 AU require a 50 foot setback from private water wells. Larger feedlots (≥300 AU) must be at least 100 feet away from private water wells. The minimum required distance doubles for wells that have less than ten feet of a confining layer or if the well has less than 50 feet of watertight casing (MDH, 2014).

Farmers must register a feedlot through the Minnesota Pollution Control Agency (MPCA) if they have at least 50 AU, or 10 AU if the feedlot is located near shoreline. Larger feedlots must follow additional regulations. Feedlots with more than 300 AU must submit a manure management plan if they do not use a licensed commercial applicator. Feedlots with more than 1,000 AU are regulated through federal National Pollutant Discharge Elimination (NPDES) permits (MPCA, 2011) and must submit an annual manure management plan as part of their permit (MPCA, 2015).

As part of new feedlot construction, an environmental assessment must be completed for feedlots with a proposed capacity of greater than 1,000 AU. If the feedlot is located in a sensitive area the requirement for an environmental assessment is 500 AU (MPCA, 2017b). Farmers must register their feedlot if it is in active status. Feedlots are considered active until no animals have been present on the feedlot for five years. To register, farmers fill out paperwork which includes a chart with the type and maximum number of animals on the feedlot (MPCA, 2017a). Registration is required to be completed at least once during a set four year period, the current period runs from January 2018 to December 2021. As of November 2017, approximately 24,000 feedlots were registered in Minnesota (MPCA, 2017b). A map and table of the feedlots located in the Rice County study area can be found below (Figure 7; Table 10).

Table 10. Feedlots and Permitted Animal Unit Capacity, Rice County

Township	Total Feedlots	Active Feedlots	Inactive Feedlots	Average AU Permitted** Per Feedlot	Total Permitted** AU	Total Square Miles	Permitted** AU per Square Mile
Bridgewater	117	7	110	149	1,046	36	29
Cannon City	149	12	137	123	1,477	31	48
Morristown	138	28	110	146	4,081	35	117
Northfield	110	20	90	305	6,107	39	158
Total	514	67	447	190*	12,711	140	91*

^{*}Represents an average value

On average there are 91 AU per square mile (0.14 AU/acre) over the entire study area (Table 10). Manure is often applied to cropland, so it is pertinent to look at the AU per cropland acre. In the Rice County study area livestock densities average 0.27 AU per acre of row crops (MPCA, 2018b; USDA NASS, 2013).

^{**}Animals permitted may not be the actual animals on site. The total animals permitted is the maximum number of animals that are permitted for a registered feedlot. It is common for feedlots to be have less livestock than permitted.

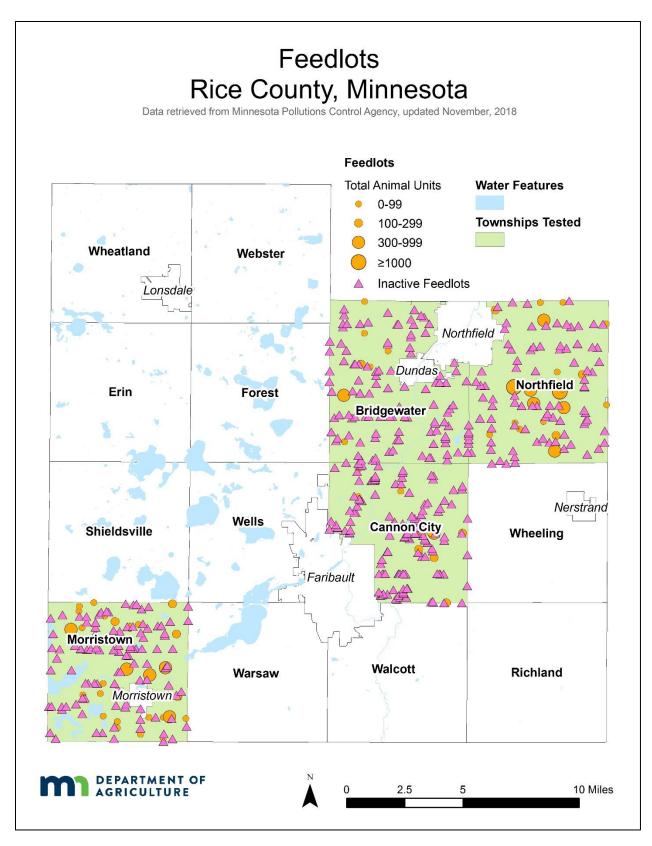


Figure 7. Feedlot Locations in Rice County (MPCA, 2018b)

FERTILIZER STORAGE LOCATION

MDA tracks licenses for bulk fertilizer storage facilities, anhydrous ammonia, and chemigation sites (Table 11). Abandoned sites are facilities that once housed fertilizer chemicals. These sites are also noted and tracked by the MDA as they are potential contamination sources.

Table 11. Fertilizer Storage Facility Licenses and Abandoned Sites, Rice County

Township	Bulk Fertilizer Storage	Anhydrous Ammonia	Chemigation Sites	Abandoned Sites	Total
Bridgewater	0	0	0	0	0
Cannon City	0	0	0	0	0
Morristown	0	0	1	0	1
Northfield	0	0	0	0	0
Total	0	0	1	0	1

Data retrieved from MDA Pesticide and Fertilizer Management Division, 2018; updated March 2018

SPILLS AND INVESTIGATIONS

The MDA is responsible for investigating any fertilizer spills within Minnesota. Figure 8 shows the locations of mapped historic fertilizer spills within the Rice County study area. While other types of spills are recorded, only sites that are potential point sources of nitrogen to the groundwater are reported here (MDA, 2017).

The MDA tracks several types of incidents. Incident investigations are typically for larger spills. There are no larger spills in the study area. Contingency areas are locations that have not been remediated because they were inaccessible or the contaminant could not be removed for some other reason. They are often a part of an incident investigation. There are no contingency areas in this study area. Old emergency incidents were closed prior to March 1st, 2004 (MDA, 2017), but they can still be a point source. At most of these older sites, the contaminants are unknown and their location may not be precise. There are two in the study area. Small spills and investigations are typically smaller emergency spills such as a truck spilling chemicals. There are two in the study area. It is important to note that while the locations of the incidents described are as accurate as possible, it is an incomplete dataset (MDA, 2017). A breakdown of chemical type of these incidents can be found in Table 12. A breakdown of the fertilizer specific spills and investigations, by township, can be found in Table 13.

Table 12. Spills and Investigations by Chemical Type, Rice County

Contaminant	Incident Investigations	Contingency Areas	Small Spills and Investigations	Old Emergency Incidents	Total
Fertilizer	0	0	0	1	1
Pesticides & Fertilizer	0	0	0	0	0
Anhydrous Ammonia	0	0	2	1	3
Total	0	0	2	2	4

Table 13. Fertilizer Related Spills and Investigations by Township, Rice County

Township	Incidents and Spills
Bridgewater	1
Cannon City	0
Morristown	0
Northfield	3
Total	4

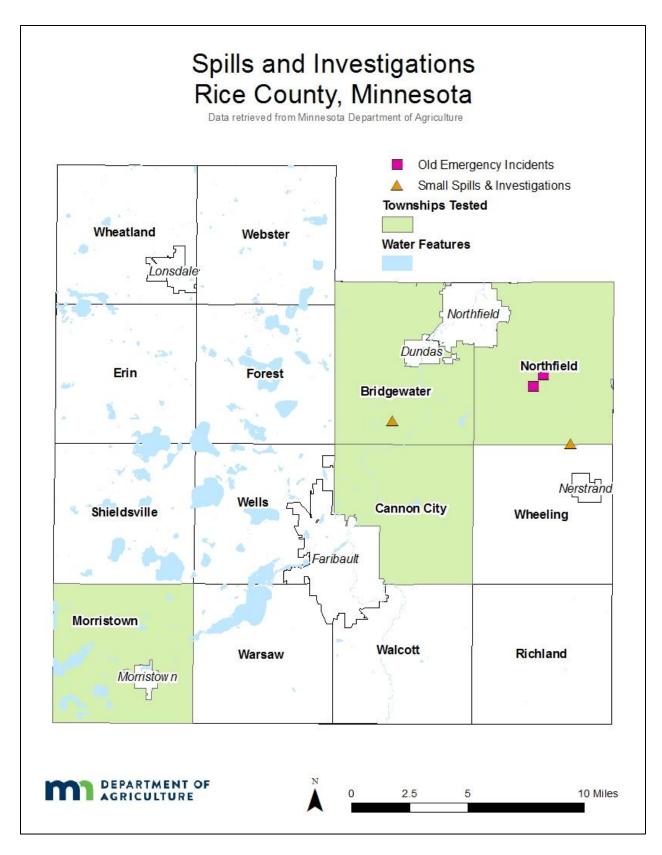


Figure 8. Fertilizer Spills and Investigations in Rice County (MDA, 2017)

APPENDIX C

LAND AND WATER USE

LAND COVER

Typically locations were selected for the Township Testing Program if at least 20 percent of the land cover was in row crop production. Rice County is mostly rural and is dominated by row crop agriculture and pasture lands (Figure 9; Table 14). Row crops can include: corn, sweet corn, soybeans, alfalfa, sugar beets, potatoes, durum wheat, dry beans and double crops involving corn and soybeans.

Rice County is south of the Twin Cities. Relatively little land (5%) in the study area is considered developed. Morristown is a western township and at 7% it has the most open water and wetland of the townships in the study area (Figure 9; Table 14).

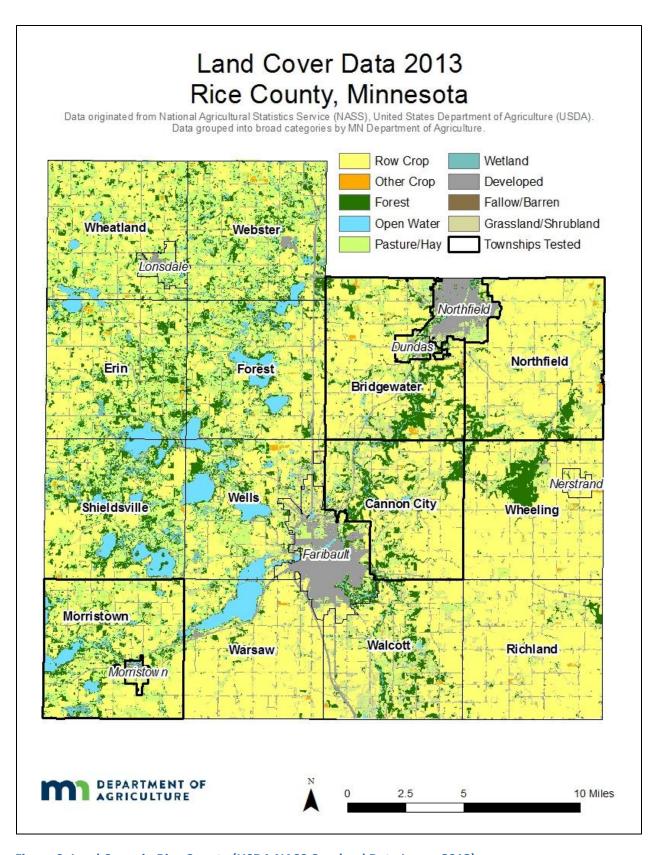


Figure 9. Land Cover in Rice County (USDA NASS Cropland Data Layer, 2013)

Table 14. Land Cover Data (2013) by Township, Rice County (USDA NASS Cropland Data Layer, 2013)

Township	Total Acres	Row Crop	Other Crops	Forest	Open Water	Pasture/ Hay	Wetland	Developed	Fallow/ Barren	Grassland/ Shrubland
Bridgewater	23,040	51%	1%	15%	0%	16%	1%	6%	0%	9%
Cannon City	19,549	50%	0%	16%	1%	14%	1%	5%	0%	13%
Morristown	22,282	42%	1%	12%	4%	32%	3%	4%	0%	2%
Northfield	24,718	68%	1%	7%	0%	12%	0%	5%	0%	8%
Average	89,589*	53%	1%	12%	1%	18%	2%	5%	0%	8%

^{*} Represents a total

WATER USE

Water use permits are required for wells withdrawing more than 10,000 gallons of water per day or 1,000,000 gallons of water per year (MDNR, 2018). There are a total of 18 active groundwater well permits in the study area, 12 of which are used for agricultural irrigation (Figure 10). About 1,660 acres of cropland are permitted for groundwater irrigation in this area (Table 15). Most permitted wells withdraw groundwater from Paleozoic aquifers (Table 16; MDNR, 2017).

Table 15. Active Groundwater Use Permits by Township, Rice County

Township	Major Crop Irrigation Well Permits	Average Depth (feet)	Acres Permitted
Bridgewater	2	219	42
Cannon City	0	0	0
Morristown	1	245	50
Northfield	9	303	1,568
Total	12	284	1,660

Table 16. Active Groundwater Use Permits by Aquifer, Rice County

		Average	Aquifer			
Water Use Well Permits	Total	Depth (feet)	Paleozoic	Not Classified		
Major Crop Irrigation	12	284	12	0		
Waterworks	1	517	1	0		
Special Categories*	5	164	1	4		
Total	18	263	14	4		

^{*} All Special Categories displayed in the figure and table are for Livestock Watering.

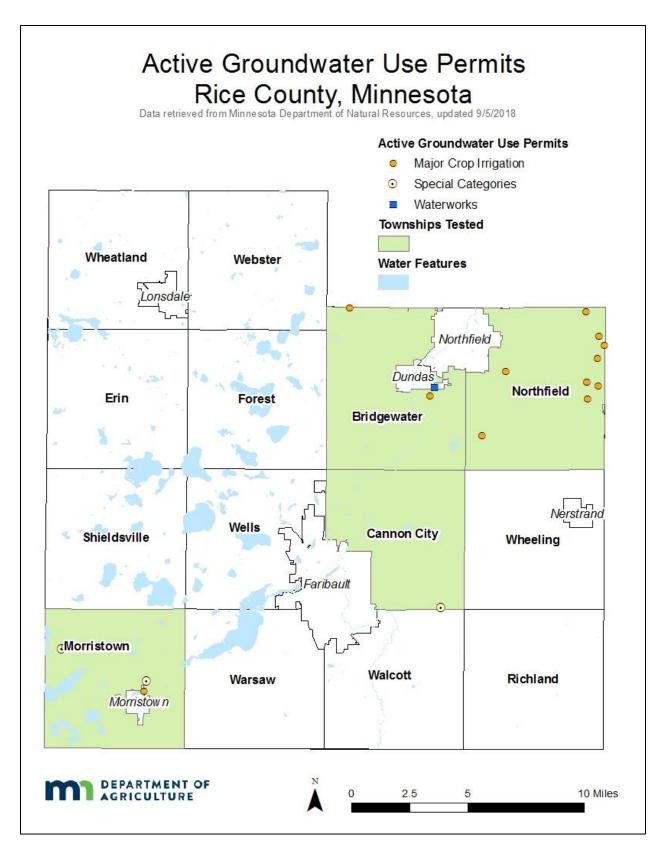


Figure 10. Active Groundwater Use Permits in Rice County (MDNR, 2017)

APPENDIX D

Nitrate Brochure

The Minnesota Department of Agriculture and the Rice County SWCD would like to **thank you** for participating in the private well volunteer nitrate monitoring. The results of your water sample are enclosed. Results from this sampling event will be reviewed and summarized and a summary report will be issued to the counties. In addition, the data will be used to determine the need and the design of a long-term monitoring network. Below is general information regarding nitrate result ranges.

If the Nitrate result is between 0 to 4.9 mg/L:

- Continue to test your water for nitrate every year or every other year.
- Properly manage nitrogen sources when used near your well.
- Continue to monitor your septic tank. Sewage from improperly maintained septic tanks may contaminate your water.
- Private wells should be tested for bacteria at least once a year. A Minnesota Department of Health (MDH)
 certified water testing lab can provide nitrate and bacteria testing services. Search for the lab nearest you
 at www.health.state.mn.us/labsearch.

If the Nitrate result is between 5 to 9.9 mg/L:

- Presently the nitrate nitrogen level in your water is below the nitrate health standard for drinking water.
 However, you have a source of contamination which may include: contributions from fertilized lawns or fields, septic tanks, animal wastes, and decaying plants.
- Test annually for both nitrate and bacteria. As nitrate levels increase, especially in wells near cropped
 fields, the probability of detecting pesticides also increases. MDA monitoring data indicates that pesticide
 levels are usually below state and federal drinking water guidelines. For more information on testing and
 health risks from pesticides and other contaminants in groundwater go to:
 http://www.mda.state.mn.us/protecting/waterprotection/pesticides.aspx
- In addition to pesticides, high nitrate levels may suggest an increased risk for other contaminants. For more information go to: http://www.health.state.mn.us/divs/eh/wells/waterquality/test.html

If the Nitrate result is above 10 mg/L:

- **Do not allow this water to be consumed by infants**, Over 10 mg/L is not safe for infants younger than 6 months of age
- **Pregnant women** also may be at risk along with **other people with specific metabolic conditions.** Find a safe alternative water supply.
- Consider various options including upgrading the well if it was constructed before the mid 1970's.
- Be sure to retest your water prior to making any significant financial investment in your existing well system. See link to MDH certified labs listed above.
 - Boiling your water increases the nitrate concentration in the remaining water.

Infants consuming high amounts of nitrates may develop Blue Baby Syndrome (Methemoglobinemia). This disease is potentially fatal and first appears as blue coloration of the fingers, lips, ears, etc. Seek medical assistance immediately if detected

If you have additional questions about wells or well water quality in Minnesota, contact your local Minnesota Department of Health office and ask to talk with a well specialist or contact the Well Management Section Central Office at health.wells@state.mn.us or at 651-201-4600 or 800-383-9808. If you have questions regarding the private well monitoring contact Nikol Ross at 651-201-6443 or Nikol.Ross@state.mn.us.

APPENDIX E

Table 17. Reasons Wells Were Removed from the Final Well Dataset by Township, Rice County

Township	Point Source	Well Construction Problem	Hand Dug well	Unsure of water source	Site Visit Completed - Well Not Found & Constructed before 1975 & No Well ID	No Site Visit & Constructed before 1975 & No Well ID	No Site Visit & Insufficient Data & No Well ID	Shared Well	Total
Bridgewater	1	2	0	1	0	6	2	0	12
Cannon City	0	0	0	1	0	3	0	2	6
Morristown	1	0	0	0	0	2	0	0	3
Northfield	2	4	1	0	2	15	4	1	29
Total	4	6	1	2	2	26	6	3	50

Table 18. Completed Site Visits for Wells Removed from the Final Well Dataset by Township, Rice County

Township	Site Visit	No Site Visit	Total
Bridgewater	3	9	12
Cannon City	1	5	6
Morristown	0	3	3
Northfield	8	21	29
Total	12	38	50

APPENDIX F

MINNESOTA WELL INDEX

The MWI was used to gather information about the four study area townships in Rice County. This section includes all documented drinking water wells in the study area, not just wells MDA sampled. Table 19 summarizes the general aquifer types, while the following is a brief summary of the major aquifer types with the average well depth. According to the information from the MWI (MDH, 2018):

In these townships, there are 393 documented (have a verified location in the MWI) drinking water wells:

- 42 percent of wells were completed in the Prairie Du Chien group. This is the most common aquifer used in the study area.
- The Jordan Sandstone aquifer is the deepest aquifer recorded as used in Rice County. Wells completed in this aquifer average 385 feet deep and make up 22% of the documented wells.
- Quaternary wells are somewhat uncommon in the study area, making up about 5 percent of documented wells.

Table 19. Aquifer Type Distribution of Active Drinking Water Wells in Minnesota Well Index by Township, Rice County

Township	Quaternary Water Table	Quaternary Buried Aquifer	Platteville	St. Peter Sandstone	Prairie Du Chien Group	Ordovician, Undifferentiated	Jordan Sandstone	Indeterminate	Multiple Aquifer	Not Available	Total
				Numbe	er of Wells drav	ving water from aqui	fer				
Bridgewater	1	5	0	6	51	0	44	0	1	21	129
Cannon City	4	4	2	31	54	1	8	0	1	15	120
Morristown	1	6	0	10	28	0	0	0	0	12	57
Northfield	0	0	0	5	34	1	36	1	0	10	87
Total	6	15	2	52	167	2	88	1	2	58	393
Average Well Depth (feet)	72	97	185	180	223	233	385	70	140	243	249

SWCD Logo

Private Well Survey for Township Testing Program

The Minnesota Department of Agriculture appreciates you taking the time to answer a few questions about your well. These questions are voluntary, but will help in the analysis of your nitrate results and provide information as to nitrate concentrations across Minnesota. Your name, addresses, telephone numbers, and e-mail addresses are considered private under Minnesota Statutes Chapter 13. Only data from sample results, general location data and unique well number are considered public. Only people with a need to access your private data in support of the private well nitrate sampling program will have authority to access your data unless you provide MDA with an informed consent to release the data, upon court order or provided to the state or legislative auditor to review the data. If you don't know an answer to a question, skip it and go on to the next question. Please make corrections to contact information if needed.

First name Last name			
Parcel NumberTownship			
			7in
Physical address		- STANAS CONTRACTOR	
Mailing address	_ City	State	Zip
Phone number (in case we have questions 1. What setting did the water sample home from? Please choose of Sub-division	only one. ∃Country □M	unicipal/City* □ C	
2. Are there livestock on this property? (more than 10 head of cattle, 30 head of hogs or an equivalent num	ber of other live □ Yes	estock)	
3. Do you mix or store fertilizer (500 lb. or more) on the farm site?4. Does farming take place on this property?	□ Yes □ Yes □ Yes	□ No □ No	
WELL INFORMA It is extremely helpful if you can go to your well - this is a 6 <i>digit number</i> found on a metal t	and look for th		
5. Does your well have a Unique Well ID number? ☐ Yes	□ No	□Don't Kno	w
6. If yes , what is the Unique Well ID?(6 digit numb	<i>er</i> found on a m	netal tag attached to	o your well casing)
7. Type of well construction ? $\ \square$ Drilled $\ \square$ Sand point $\ \square$ Hand	d Dug Well □D	on't Know □ Oth	ner
8. Year well was built? \square before 1975 \square 1975 to 1984 \square 1985	to 1993 🛘 199	4-Present □D	on't Know
11. Distance to a septic system? □ 0 - 49 Feet	□ 50 -99 feet □ 50 -99 feet	☐ 100 - 299 feet☐	□ >=300 feet □ >=300 feet
13. Is this well currently used for human consumption (Drinking or C	cooking)?	∃ Yes □	No
14. Please check any water treatment you have other than a wate	softener.		
□ None □ Reverse Osmosis □ Distillation	☐ Filtering s	system Otl	ner
15. When did you last have your well tested for nitrates?			
☐ Never tested ☐ Within the last year	☐ Withir	n the last 3 years	
☐ Within the last 10 years ☐ Greater than 10 years		☐ Not sure	
16. What was the result of your last nitrate test?			
\square <3 mg/L (ppm) \square 3<10 mg/L(ppm) \square	>=10 mg/L (pp	m) 🔲 Don't Kn	ow

APPENDIX H

Table 20. Property Setting for Well Location

Township	Total	Country	Municipal	River home	Lake Home	Sub- division	Other	Not Available
Bridgewater	189	68.8%	0.0%	2.1%	0.0%	11.6%	3.2%	14.3%
Cannon City	113	83.2%	0.0%	0.0%	0.0%	3.5%	1.8%	11.5%
Morristown	68	67.6%	0.0%	0.0%	10.3%	1.5%	0.0%	20.6%
Northfield	108	82.4%	0.0%	0.0%	0.0%	1.9%	0.0%	15.7%
Total	478	75.1%	0.0%	0.8%	1.5%	6.1%	1.7%	14.9%

Table 21. Well Construction Type

Township	Total	Drilled	Sand point	Hand dug	Not Available
Bridgewater	189	73.0%	0.5%	0.0%	26.5%
Cannon City	113	77.9%	2.7%	0.0%	19.5%
Morristown	68	72.1%	4.4%	0.0%	23.5%
Northfield	108	67.6%	4.6%	0.9%	26.9%
Total	478	72.8%	2.5%	0.2%	24.5%

Table 22. Age of Well

Township	Total	1994- Present	1985 to 1993	1975 to 1984	Before 1975	Not Available
Bridgewater	189	21.7%	11.6%	13.2%	25.4%	28.0%
Cannon City	113	37.2%	7.1%	5.3%	24.8%	25.7%
Morristown	68	20.6%	5.9%	8.8%	35.3%	29.4%
Northfield	108	25.9%	6.5%	9.3%	30.6%	27.8%
Total	478	26.2%	8.6%	9.8%	27.8%	27.6%

Table 23. Depth of Well

Township	Total	0-15 Feet Deep	16-49 Feet Deep	50-99 Feet Deep	100-299 Feet Deep	≥ 300 Feet Deep	Not Available
Bridgewater	189	0.5%	6.3%	13.2%	28.6%	18.5%	32.8%
Cannon City	113	0.9%	3.5%	8.0%	34.5%	28.3%	24.8%
Morristown	68	0.0%	2.9%	11.8%	45.6%	2.9%	36.8%
Northfield	108	0.0%	6.5%	13.9%	29.6%	16.7%	33.3%
Total	478	0.4%	5.2%	11.9%	32.6%	18.2%	31.6%

Table 24. Unique Well ID Known

Township	Total	No, Unique Well ID not known	Yes, Unique Well ID known	Not Available
Bridgewater	189	22.8%	15.3%	61.9%
Cannon City	113	22.1%	21.2%	56.6%
Morristown	68	33.8%	8.8%	57.4%
Northfield	108	21.3%	16.7%	62.0%
Total	478	23.8%	16.1%	60.0%

Table 25. Livestock Located on Property

Township	Total	No Livestock	Yes Livestock	Not Available
Bridgewater	189	86.2%	2.1%	11.6%
Cannon City	113	86.7%	2.7%	10.6%
Morristown	68	64.7%	16.2%	19.1%
Northfield	108	76.9%	6.5%	16.7%
Total	478	81.2%	5.2%	13.6%

Table 26. Fertilizer Stored on Property

Township	Total	No Fertilizer Stored	Yes Fertilizer Stored	Not Available
Bridgewater	189	87.3%	0.5%	12.2%
Cannon City	113	89.4%	0.9%	9.7%
Morristown	68	80.9%	0.0%	19.1%
Northfield	108	81.5%	0.9%	17.6%
Total	478	85.6%	0.6%	13.8%

Table 27. Farming on Property

Township	Total	No Farming	Yes Farming	Not Available
Bridgewater	189	64.0%	22.8%	13.2%
Cannon City	113	55.8%	35.4%	8.8%
Morristown	68	39.7%	41.2%	19.1%
Northfield	108	41.7%	41.7%	16.7%
Total	478	53.6%	32.6%	13.8%

Table 28. Distance to an Active or Inactive Feedlot

Township	Total	0-49 Feet to Feedlot	50-99 Feet to Feedlot	100-299 Feet to Feedlot	Over 300 Feet to Feedlot	Not Available
Bridgewater	189	4.2%	3.2%	3.2%	63.5%	25.9%
Cannon City	113	1.8%	1.8%	5.3%	60.2%	31.0%
Morristown	68	7.4%	8.8%	10.3%	38.2%	35.3%
Northfield	108	4.6%	2.8%	10.2%	55.6%	26.9%
Total	478	4.2%	3.6%	6.3%	57.3%	28.7%

Table 29. Distance to Septic System

Township	Total	0-49 Feet to Septic	50-99 Feet to Septic	100-299 Feet to Septic	Over 300 Feet to Septic	Not Available
Bridgewater	189	3.7%	23.8%	41.3%	14.3%	16.9%
Cannon City	113	2.7%	23.0%	38.9%	19.5%	15.9%
Morristown	68	1.5%	32.4%	32.4%	5.9%	27.9%
Northfield	108	0.9%	15.7%	45.4%	19.4%	18.5%
Total	478	2.5%	23.0%	40.4%	15.5%	18.6%

Table 30. Distance to an Agricultural Field

Township	Total	0-49 Feet to Field	50-99 Feet to Field	100-299 Feet to Field	Over 300 Feet to Field	Not Available
Bridgewater	189	3.7%	8.5%	27.5%	27.5%	16.9%
Cannon City	113	5.3%	10.6%	31.9%	31.9%	15.9%
Morristown	68	5.9%	19.1%	26.5%	26.5%	25.0%
Northfield	108	4.6%	8.3%	45.4%	45.4%	18.5%
Total	478	4.6%	10.5%	32.4%	32.4%	18.2%

Table 31. Drinking Water Well

Township	Total	Not Drinking Water	Yes, Drinking Water	Not Available
Bridgewater	189	1.6%	88.4%	1.6%
Cannon City	113	0.9%	90.3%	0.9%
Morristown	68	1.5%	80.9%	1.5%
Northfield	108	3.7%	80.6%	3.7%
Total	478	1.9%	86.0%	1.9%

 Table 32. Treatment System Present (Treatment System Used for Drinking Water)

Township	Total	None	Distillation	Filtering System	Reverse Osmosis	Other	Not Available
Bridgewater	189	38.1%	0.0%	23.3%	16.9%	2.1%	19.6%
Cannon City	113	44.2%	0.0%	24.8%	12.4%	2.7%	15.9%
Morristown	68	42.6%	0.0%	17.6%	11.8%	5.9%	22.1%
Northfield	108	37.0%	0.0%	19.4%	21.3%	3.7%	18.5%
Total	478	40.0%	0.0%	22.0%	16.1%	3.1%	18.8%

Table 33. Last Tested for Nitrate

Township	Total	Within the past year	Within the last 3 years	Within the last 10 years	Greater than 10 years	Never Tested	Homeowner Unsure	Not Available
Bridgewater	189	7.9%	7.4%	10.6%	18.5%	20.6%	23.8%	11.1%
Cannon City	113	0.9%	3.5%	10.6%	21.2%	23.9%	31.0%	8.8%
Morristown	68	1.5%	5.9%	7.4%	19.1%	26.5%	22.1%	17.6%
Northfield	108	6.5%	3.7%	13.9%	22.2%	13.9%	25.0%	14.8%
Total	478	5.0%	5.4%	10.9%	20.1%	20.7%	25.5%	12.3%

Table 34. Last Nitrate Test Result

Township	Total	<3 mg/L Nitrate-N	3<10 mg/L Nitrate-N	≥10 mg/L Nitrate-N	Don't Know	Not Available
Bridgewater	189	9.0%	3.7%	1.6%	51.9%	33.9%
Cannon City	113	8.8%	0.9%	0.0%	55.8%	34.5%
Morristown	68	4.4%	1.5%	0.0%	52.9%	41.2%
Northfield	108	8.3%	3.7%	1.9%	55.6%	30.6%
Total	478	8.2%	2.7%	1.0%	53.8%	34.3%

APPENDIX I

Table 35. Well Construction Type for Final Well Dataset

Township	Total Wells	Drilled	Sand Point	Not Available
Bridgewater	177	141	0	36
Cannon City	107	89	3	15
Morristown	65	50	2	13
Northfield	79	70	0	9
Total	428	350	5	73

Data compiled from well logs and homeowner responses.

Table 36. Well Depth for Final Well Dataset

Township	Total Wells	Min	Max	Median	Mean
Bridgewater	49	75	480	240	256
Cannon City	45	66	600	280	266
Morristown	14	92	235	162	162
Northfield	32	120	530	315	312
Total	140	66	600	270	263

Data compiled from well logs only; homeowner responses are not included.

Table 37. Year of Well Construction for Final Well Dataset

Township	Total Wells	Min	Max	Median	Mean
Bridgewater	50	1940	2015	1997	1995
Cannon City	46	1970	2016	2000	1998
Morristown	15	1920	2007	1996	1991
Northfield	35	1910	2015	1999	1992
Total	146	1910	2016	1998	1995

Data compiled from well logs only; homeowner responses are not included. Most wells do not have a well log if they were constructed before 1974.

APPENDIX J

Private Well Field Log

Sample#		rivate Well Fiel	u Log & Wel	i Survey i	orm
Sample# Duplicate#		– Field Blank#			
Well Owner Cont					
Name					
Sampling Informa	ation				
Sampler		_Time Arrived			
Pump Start Time_		_Discharge Rate		Time C	ollected
Sample Point Loca	tion	0000000			100-
Well Location					
GPS Location		_UTM Easting (X)_		UTM N	Northing (Y)
Weather		Win	d Speed/Direction	on (mph)	Air Temp (°F)
Time	Temp °C (1.0)	Specific Cond µs/cm (10%)	DO mg/L (10%)	pH (0.1)	Appearance/Odor/Notes
Sield Comments	samula specifi				
Sield Comments - :	sample specific	enotes			
Sield Comments - :	sample specific	enotes			
Field Comments - :	sample specific	enotes			
`ield Comments - :	sample specific	notes			

APPENDIX K

Table 38. Temperature (°C) of Well Water for Final Well Dataset

Township	Samples	Min	Max	Median	Mean
Bridgewater	24	9.76	12.53	10.68	10.69
Cannon City	8	9.82	12.18	10.43	10.58
Morristown	4	9.90	10.46	10.37	10.28
Northfield	19	8.86	11.63	10.49	10.47
Total	55	8.86	12.53	10.46	10.57

Table 39. pH of Well Water for Final Well Dataset

Township	Samples	Min	Max	Median	Mean
Bridgewater	24	6.96	7.93	7.23	7.26
Cannon City	8	7.10	7.33	7.19	7.20
Morristown	4	7.08	7.47	7.19	7.23
Northfield	19	7.09	7.57	7.33	7.32
Total	55	6.96	7.93	7.24	7.27

Table 40. Specific Conductivity (μ S/cm) of Well Water for Final Well Dataset

Township	Samples	Min	Max	Median	Mean
Bridgewater	24	495	1,229	764	794
Cannon City	8	692	901	780	788
Morristown	4	571	870	765	743
Northfield	19	526	952	623	692
Total	55	495	1,229	750	754

Table 41. Dissolved Oxygen (mg/L) of Well Water for Final Well Dataset

Township	Samples	Min	Max	Median	Mean
Bridgewater	24	0.10	9.08	0.95	2.31
Cannon City	8	0.10	7.72	3.55	2.99
Morristown	4	0.11	6.17	2.79	2.96
Northfield	19	0.09	5.67	0.64	1.49
Total	55	0.09	9.08	0.86	2.18